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ABSTRACT  

Breast cancer is one of the most frequently diagnosed diseases. Conventional forms of 

treatment demonstrate severe side effects and do not particularly target tumor cells. Thus, 

there is a need for new therapeutic strategies such as nanoparticle-based therapeutic 

vaccine, which not only target tumor cells but are also immunotherapeutic.  

Poly(lactic-co-glycolic acid) nanoparticles (PLGA NPs) containing ovalbumin (OVA) as a 

model antigen, prepared by a modified double emulsion solvent evaporation method, were 

investigated for suitability as advanced drug delivery systems against this disease. To 

modify physicochemical characteristics of nanoparticles, variations were made in the 

amount of incorporated OVA, glycol-chitosan (CS) and concentration of  

poly(vinyl)alcohol (PVA) in the internal aqueous phase (IP). As the IP surfactant 2% (w/v) 

PVA was used. PVA and Pluronic® F127 (PF127) (both 0.3% (w/v)) were also tested as 

the external aqueous phase (EP) surfactants. Implementing the Quality-by-design approach 

for the development of nanoparticles ensures that quality is sustained. Average size (Z-

average) and polydispersity index (PDI) were assessed by Dynamic Light Scattering. Zeta 

potential (ZP) was determined with  Laser Doppler Velocimetry in combination with M3 

Phase Analysis Light Scattering. OVA encapsulation was indirectly measured with High 

Pressure Liquid Chromatography and expressed as antigen encapsulation efficiency and 

loading capacity after calculations. Nanoparticle average size varied from 190 to 472 nm, 

with surface charge close to neutrality (from -5 to 5 mV) and high encapsulation efficiency 

(71.4% or more). For better understanding of critical process parameters and critical 

quality attributes, a mathematical linear modelling approach was used. Factors (% PVA, 

surfactant in EP, OVA, CS) and responses (Z-average, PDI, ZP, amount of encapsulated 

OVA) were determined. As a result, a causal predictive model showing the importance of 

all factors and their interactions, was established. Physicochemical properties of PLGA 

NPs were most affected by concentration of PVA in IP, CS and PF127 as surfactant in EP. 

A design-space was created  by resourcing the developed models and considering target 

properties of the nanoparticulate system. Models were further validated by performing an 

additional set of experiments to confirm their prediction accuracy. 

 

Key words: breast cancer, poly(lactic-co-glycolic acid) nanoparticles, nanoparticle-based 

therapeutic vaccine, quality-by-design, design-space 
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RAZŠIRJENI POVZETEK 

 

Rak na dojki je ena izmed najbolj pogosto diagnosticiranih bolezni v svetu. Običajne 

oblike zdravljenja, kot sta kemoterapija in radioterapija, lahko povzročijo hude neželene 

učinke, prav tako pa ne ciljajo tumorskih celic neposredno, zato obstaja potreba po novih 

terapevtskih strategijah, ki bi povečale učinkovitost zdravljenja in bi pacientom izboljšale 

kakovost življenja. Polimerni nanodelci (ND) so se v številnih raziskavah izkazali kot 

učinkoviti dostavni sistemi za selektivno ciljanje. Ti dostavni sistemi lahko potencialno 

dostavijo bodisi antigen ali adjuvant do želene lokacije po vnaprej predvideni poti in 

poskrbijo za zadostno trajanje optimalnega imunskega odziva, obenem pa lahko zaščitijo 

učinkovino pred razgradnjo, dokler se iz dostavnega sistema ne sprosti. Uporaba 

biorazgradljivih ND z vgrajenim antigenom, kot so proteini in peptidi, ali DNA predstavlja 

napredek za kontrolirano sproščanje antigena in optimizacijo želenega imunskega odziva 

preko selektivnega ciljanja na antigen predstavljajoče celice (APC). Najbolj pomembna 

vprašanja v razvoju učinkovitih cepiv zajemajo učinkovito dostavo antigena v APC, zlasti 

v dendritične celice (DC) in aktivacijo APC. ND, pripravljeni iz biorazgradljivih in 

biokompatibilnih polimerov, kot so kopolimer mlečne in glikolne kisline (PLGA), poli 

(aminokisline) in polisaharidi, so se izkazali za učinkovite nosilce antigenov.  

 

Namen predstavljenega dela je bila najprej izdelava PLGA ND, ovrednotenje le-teh in na 

koncu uporaba matematičnega pristopa linearnega modeliranja za boljše razumevanje 

kritičnih procesnih parametrov in kritičnih lastnosti kakovosti. Kot rezultat smo želeli 

izdelati vzročni napovedni model, ki kaže na pomembnost vseh parametrov in njihovih 

interakcij. Z linearnim pristopom modeliranja smo želeli določiti, (i) kateri parametri 

resnično vplivajo na lastnosti PLGA ND; (ii) ali so kateri od parametrov v medsebojnih 

interakcijah, ki so statistično značilne (sinergizem ali antagonizem); (iii) katere so 

najboljše nastavitve parametrov za dosego optimalnih proizvodnih pogojev; in (iv) kakšne 

so napovedane vrednosti lastnosti PLGA ND za dane nastavitve parametrov.  

 

V tem raziskovalnem delu smo izdelali in ovrednotili PLGA ND z vgrajenim 

ovalbuminom (OVA) kot modelnim antigenom. Izdelali smo jih z modificirano metodo 
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dvojne emulzije z izhlapevanjem topila. PLGA ND so se razlikovali glede na količino 

vgrajenega OVA, glikol-hitosana (GH) in koncentracijo polivinilalkohola (PVA) v notranji 

vodni fazi, ter glede na uporabljeno površinsko aktivno snov (PAS) v zunanji vodni fazi. V 

notranji vodni fazi smo kot PAS uporabili 2 % (m/v) PVA. V zunanji vodni fazi smo kot 

PAS testirali PVA in Pluronic® F127 (PF127) v enakih koncentracijah.  

Notranja vodna faza je bila sestavljena iz različnih koncentracij PVA in vodne raztopine 

GH, v kateri je bil raztopljen OVA. Nato smo jo emulgirali z organsko raztopino, ki je 

vsebovala polimer in organsko topilo (PLGA v diklorometanu), z uporabo ultrazvočnega 

procesorja. K nastali emulziji v/o smo dodali PVA in sonicirali pod enakimi pogoji. 

Nastalo dvojno emulzijo v/o/v smo po kapljicah dodali k zunanji vodni fazi (PVA ali 

PF127) in mešali na magnetnem mešalu, kar je omogočilo izhlapevanje organskega topila 

in tvorbo PLGA ND. PLGA ND smo nato zbrali po treh ciklih centrifugiranja, kjer smo jih 

sprali z ultra čisto vodo pred vsakim centrifugiranjem, da bi odstranili antigen, ki ni bil 

vgrajen, in odvečno količino PAS. PLGA ND smo dispergirali v fosfatnem pufru in hranili 

pri 4° C za nadaljnje poskuse. Za formulacije PLGA ND z vgrajenim OVA in GH smo 

izdelali tudi kontrolne formulacije, ki niso vsebovale OVA in GH. Vsaka formulacija je 

bila izdelana v triplikatu.  

Pri izdelavi PLGA ND smo sledili vnaprej pripravljenemu načrtu; to je popolnemu 

faktorskem načrtu; ki se uporablja, ko hočemo določiti najbolj pomembne parametre v 

procesu; v našem primeru različne količine in koncentracije dodanih komponent. Načrt je 

upošteval vse možne interakcije med izbranimi parametri, kar je rezultiralo v izdelavi 32 

različnih formulacij glede na vsebnost komponent. Pri načrtu in razvoju PLGA ND smo 

upoštevali sistematičen pristop, tako imenovan »Quality-by-design«, ki zagotavlja 

kakovost v razvoju. 

Povprečna velikost (Z-ave) in polidisperzni indeks (PDI) izdelanih ND smo izmerili z 

napravo Zetasizer S, po principu dinamičnega sipanja svetlobe. Napravo Zetasizer Z smo 

uporabili za meritev zeta potenciala (ZP), ki smo ga določili z lasersko Dopplerjevo 

elektroforezo. Količino vgrajenega OVA smo posredno izmerili z visokotlačno tekočinsko 

kromatografijo in po izračunih izrazili kot učinkovitost vgrajevanja antigena in vsebnost v 

PLGA ND. Ker so PLGA ND namenjeni za subkutano ali intratumoralno aplikacijo, so 

bile zaželene določene lastnosti PLGA ND; Z-ave med 50 in 200 nm, absolutna vrednost 

ZP manjša od 5 mV, PDI nižji od 0,2; z namenom da preprečimo možno toksičnost in 

prezgodnjo fagocitozo ND v makrofagih v krvnem obtoku.  
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Povprečna velikost PLGA ND je variirala med 190 in 472 nm, delci so imeli površinski 

naboj blizu nevtralnosti (od -5 do 5 mV) in visoko učinkovitost vgrajevanja (71,4 % ali 

več). Določili smo parametre (% PVA, PAS v EP, OVA, GH)  in lastnosti (Z-ave, PDI, ZP, 

količina vgrajenega proteina), pomembne za pripravo PLGA ND. Na fizikalno-kemijske 

lastnosti PLGA ND so najbolj vplivali koncentracija PVA v IP, GH in PF127 kot PAS v 

EP. Izdelali smo precizne modele za lastnosti PLGA ND, razen za PDI, ki na podlagi tega 

ni bil vključen v ustvarjanje eksperimentalnega prostora. Na podlagi izdelanih modelov 

smo izoblikovali eksperimentalni prostor, območje v katerem so zagotovljeni kriteriji za 

pripravo PLGA ND z zaželenimi lastnostmi. Modeli so bili validirani z izvajanjem 

dodatenega niza poskusov za potrditev njihove točnosti napovedovanja. Pomembno je 

omeniti, da modeli niso 100 % natančni, vendar pa nam dajejo koristne informacije o tem, 

kaj je bolj pomembno, če upoštevamo sistem modeliranja. 

 

V prihodnje bi bilo smotrno opraviti več eksperimentov z večjo raznolikostjo v parametrih. 

Lahko bi uporabili enak pristop modeliranja z drugimi podobnimi sistemi, analizirali 

razlike in podobnosti. Priporočljivo bi bilo, da bi preizkusili tudi nelinearni pristop k 

razvoju modelov. Potrebno bi bilo dodatno raziskati model za PDI z nelinearnim 

pristopom, da bi videli, ali je nelinearnost razlog za visoko odstopanje. 

 

Ključne besede: rak na dojki, nanodelci iz kopolimera mlečne in glikolne kisline, cepivo, 

kakovost v razvoju, eksperimentalni prostor  
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1  INTRODUCTION 

 

1.1 Advanced drug delivery systems 
 

The matter of advanced drug delivery systems (ADDS) has been common in 

pharmaceutical exploration for some time, aiming to treat diseases with greater control of 

drug delivery and action over conventional formulations (1). In the last few decades, 

development of novel carriers for advanced drug delivery has been focused on forming  

personalized treatment for a wide range of highly prevalent diseases, considering ADDS 

evident advantages for drug adimistration (2). The main intention of using ADDS is to 

deliver a biologically active compound in a controlled process (releasing rate and time 

period), to sustain drug levels in the body within a therapeutic window, preferably 

directing the drug towards a specific organ or tissue (targeted drug delivery) without 

degradation during the whole process (2-4). 

 

1.2 Nanotechnology  
 

The term nanotechnology describes a multidisciplinary approach to the design, 

development, characterization and application of materials, structures, devices and systems 

through monitoring the matter at the nanoscale (5). In the context of this, the prefix nano is 

used when a material or a structure has at least one dimension in the range of 1-100 nm. 

Nevertheless, the literature about nanosystems (used as a delivery system for active 

ingredients) also includes a particle size of up to 1 µm. In the nano range, physical, 

chemical and biological properties of materials differ significantly from the properties of 

the origin "macro" materials, which is the starting point for their use (6).  

Utilization of nanotechnology for medical use is called nanomedicine and involves the use 

of materials and devices in nano scale for the diagnosis, prevention and treatment of 

diseases (7). The formulation of active substances in the nanosystems has numerous 

advantages over the free active substance: the protection of active ingredients from 

premature degradation, to prevent premature interaction of substances with the 

environment, to improve the penetration of the active substance in the tissue of interest 
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(e.g., tumor), enable a controlled release of the active ingredient and improve the delivery 

of active substances in cells (8). 

 

1.3 Nanostructures as delivery systems for active substances 
 

Nanostructures are eminent delivery systems. The most common types are described in 

Table I and Figure 1. More recent forms of nanostructures, quantum dots, nanoshells, 

carbon nanotubes, nanogels and others are also receiving great interest from scientists all 

over the world (9-11). 

 

Table I: Types of nanostructures (10-12). 

Type  Description 

Polymeric  

nanoparticles 

20-400 nm 

The most common and diverse in composition and functions. The active 

ingredient can be incorporated in the core or attached on the surface by 

adsorption or by covalent bonds. The surface of nanoparticles may contain a 

hydrophilic polymer, attached to a variety of ligands and other groups. 

Polymeric 

micelles 

20-250 nm 

Amphiphilic block copolymer assembled into nanosized core/ shell structure 

in aqueous solution. The hydrophobic core region serves as a reservoir for 

hydrophobic drugs, while the hydrophilic shell region stabilizes the 

hydrophobic core and enables the polymer to be water-soluble. 

Dendrimers 

2-10 nm 

Symetrically branched polymers with a large number of peripheral functional 

groups which facilitate fastening of ligands, fluorescent dyes or substances. 

Liposomes 

120-250 nm 

Lipophilic bilayer, hydrophilic interior and modified surface; Four known 

generations of liposomes, which differ especially in the surface groups. The 

possibility of incorporation of hydrophilic, lipophilic or amphiphilic 

substances. 

 

 

 

 

 
 

 Figure 1 : Types of nanostructures A: Polymeric nanoparticles, 
B: Polymeric micelles, C: Dendrimers, D: Liposomes (12). 
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1.3.1 Polymeric nanoparticles  
 

As already mentioned, polymeric NPs are the most common type of NPs, due to their 

advantages over other types. They are made of biocompatible and biodegradable polymers 

where the drug is entrapped, encapsulated, dissolved, or adhered to a nanoparticle matrix 

(13, 14). Biocompatible and biodegradable polymers are preferably used for preparation of 

NPs, in order to avoid toxicity and to ensure their elimination from the body (15). The 

selection of suitable polymers is dependent on the type of NPs that need to be produced. 

Important aspects to be considered are (i) required size of NPs; (ii) inherent properties of 

substances (hydrophility, charge and stability); (iii) surface characteristics (charge and 

permeability); (iv) the degree of biodegradablility, biocompatability and toxicity; (v) 

desired drug release profile; (vi) antigenicity of the final product; (vii) area of application 

among others (16, 17). Most commonly used synthetic biodegradable polymers,  approved  

by the US Food and Drug Administration (FDA) are poly(lactic acid) (PLA), poly(D,L 

lactide-co-glycolide) acid (PLGA), and poly(caprolactone) (PCL) (18). Also some natural 

polymers are suitable for use in  preparation of NPs (chitosan, albumin, gelatin, sodium 

alginate) (15). Polymeric NPs can be produced either by direct polymerization of 

monomers, from preformed polymers or ionic gelation. A schematic example of different 

preparation techniques for polymeric NPs is given in Figure 2 (19).  

 

 

 

 

 

 

 

 

 

Depending upon the method of preparation, nanospheres or nanocapsules can be obtained 

(Figure 3). Nanospheres are matrix systems in which the drug is physically and uniformly 

dispersed, whereas nanocapsules are systems in which the drug is enclosed in a cavity 

surrounded by a polymer membrane (13, 14). 

Figure 2: Schematic representation of various techniques for the 
preparation of polymeric nanoparticles. 
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* Advantages of polymeric nanoparticles (15, 20, 21) 

• Able of mimicking (size of pathogens) 

• Increase the stability of any volatile substance  

• Can carry different molecules (drugs, proteins, DNA, RNA, hydrophilic or 

hydrophobic compounds) 

• Produced  in large quantities using a wide range of methods 

• Provide protection to encapsulated agents 

• Show  improvement over traditional routes of administration (more efficient and 

effective) 

• Deliver a higher concentration of pharmaceutical agent to a desired location 

• Lower dose needed (reduction of toxicity) 

• Ability to modify drug release (sustained release) 

• Passive targeting 

• Active targeting (surface functionalization can target specific cell receptors) 

 

* Disadvantages of polymeric nanoparticles (15, 20, 21) 

• Particle aggregation (small size vs. large surface area) 

• Stability of dosage forms 

• Costly formulation 

• Highly sophisticated techology 

• Required skills to manufacture 

 

 

Figure 3: Nanospheres and nanocapsules. A: Nanosphere with 
adsorbed drug; B: Nanosphere with encapsulated drug; C: Nanocapsule 
with adsorbed drug; D: Nanocapsule with encapsulated drug 
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1.3.1.1 Modified double emulsion solvent evaporation method  
 

The double emulsion w/o/w solvent evaporation method was developed to encapsulate  

hydrophilic drugs, such as proteins, peptides and  nucleic acids. It is a modification of the 

solvent evaporation technique, which is applicable for encapsulation of hydrophobic drugs 

(22). Organic solvents are used in the solvent evaporation method to dissolve the polymer 

which is also used as the solvent for the hydrophobic drug. The drug dissolved or dispersed 

in polymer solution is next emulsified in an aqueous solution containing a surfactant or 

emulsifying agent to form oil in water (o/w) emulsion. After a stable emulsion is formed, 

the organic solvent is evaporated either by continuous stirring or by reducing the pressure. 

Preferably, for attaining the small uniform sized particle size, high-speed homogenizer or 

ultrasonication may be applied to the process (10). Modifications introduced into the 

solvent evaporation technique in this work are presented in Figure 4.  

 

In this work, organic phase consisted from PLGA (polymer) dissolved in dichloromethane 

(solvent). Aqueous phase consisted from different concentration of glycol-chitosan 

(adjuvant) and ovalbumin (model antigen). As surfactants poly(vinyl)alcohol and 

Figure 4: Schematic description of modified double emulsion sovent evaporation method.  
(adapted and altered from 23). 
 



  

6 
 

Pluronic® F127 were tested. Chemical structures of the compounds used are shown in 

Figure5. 

 

Poly(lactic-co-glycolic acid) (PLGA) 

PLGA is prepared from D,L-poly lactide (D,L-PLA) and poly glycolide (PGA), which are 

amorphous in nature. PLGA is approved by FDA for drug delivery use, thus being 

commonly used and is already commercialized for a variety of drug delivery systems. 

PLGA co-polymer undergoes degradation in an aqueous environment (hydrolytic 

degradation or biodegradation) through cleavage of its backbone ester linkages, dividing it 

into its original monomers; lactic acid and glycolic acid. These degradation products are 

physiologically eliminated and therefore cause a minimal toxicity related to PLGA. It has 

good mechanical properties, low immunogenicity and toxicity, excellent biocompatibility 

and predictable biodegradation kinetics (24). 

 

Dichloromethane (DCM) 

Dichloromethane is a volatile, colourless liquid, with a mildly sweet, not unpleasant odour. 

It can dissolve a lot of organic compounds but  is immiscible with water. In the lab, it is 

used as a solvent. Too long  exposure can be fatal, with symptoms such as respiratory 

depression and narcosis (25).  

 

Ovalbumin (OVA) 

Ovalbumin is a glycoprotein that comprises 60-65% of the total proteins of avian egg 

white. It consists of 385 amino acid residues, has four cysteine residues and a single 

cystine disulfide bridge. It belongs to the serpin family although it lacks any protease 

inhibitory activity. In pharmaceutical technology it is commonly used as model 

antigen/vaccine (26). 

 

Glycol-chitosan (CS)   

Chitosan is a natural product made from crab shell. It is a derivative of natural chitin, 

polysaccharide of β(1-4) linked D-glucosamine and N-acetyl-D-glucosamine. 

Commercially available preparations differ in molecular weight, degree of deacetylation 

and purity. Chitosan is nontoxic, biocompatible, biodegradable and has good 
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mucoadhesive properties due to its positive charge, hence acts both as an adjuvant and 

matrix for delivery systems. It also has antibacterial properties. The presence of the amino 

group alows its water solubility. In the preparation of nanoparticles, it is used to increase 

the viscosity and drug encapsulation (27, 28). 

 

Pluronic® F127 (PF127)   

PF127 is a polymer of polyoxyethylene (PEO) and polyoxypropylene (PPO) with two 96-

unit hydrophilic PEO chains surrounding one 69-unit hydrophobic PPO chain. Since it 

shows low toxicity and immunogenicity, this non-ionic bifunctional triblock copolymer is 

widely used as surfactant for the production of polymeric NPs (29). 

 

Poly(vinyl)alcohol (PVA)   

PVA is a water-soluble polymeric non-ionic surfactant, known to form PLGA NPs with 

uniform size distribution. It is produced by polimerization of vinyl acetate. Chemical 

properties depend on the degree of hydrolysis or the content of acetate groups (30). 

 

Dulbecco's phosphate buffered saline (DPBS) 

Phosphate buffered saline (PBS) is a balanced salt solution, containing sodium phosphate, 

sodium chloride and in some formulations potassium chloride and potassium phosphate. Its 

main function is to maintain pH and osmotic balance as well as to provide cells with water 

and essential inorganic ions. Renato Dulbecco developed one of the early formulas of PBS 

(DPBS). The pH value of PBS is set to be within the range of 7 to 7.6,  maintaining a 

constant pH. Frequently, it is used as a washing buffer in tissue culture and protein 

chemistry, as well as being used in the preservation of products, to prevent any changes 

during storage  (31). 

 



  

8 
 

 

 

1.3.2 Nano-particulate PLGA therapeutic cancer vaccine  
 

Currently used methods in breast cancer therapy do not particularly target tumor cells, 

which can lead to severe adverse effects. Thus, there is a desire for new treatment 

strategies (33).  

Essential components of an adequate vaccine are: antigen, adjuvant, and delivery system. 

Antigens are molecules (proteins, peptides, lipids, etc.) recognized by the immune system 

that can induce an adaptive immune response. An adjuvant is a substance able to provoke 

the innate immune system. A delivery system is defined as a platform that assures optimal 

delivery of antigen and adjuvant for the efficient activation of both innate and adaptive 

immune systems (37). 

The aim of the therapeutic cancer vaccines is to reduce the immunosupression caused by 

tumor cells. Nanomedicine-based systems have appeared effective in recognition of  tumor 

associated antigens (TAAs), as well as in capturing and presentation by antigen presenting 

cells (APCs). This leads to an extensive, specific and long-lasting immune response, 

preventing removal of antigens from circulation. The type of PLGA NPs with loaded 

Figure 5: Chemical structures. a: Poly(lactic-co-glycolic) acid (adapted from 32), 
b: Dichloromethane (adapted from 33), c: Ovalbumin (adapted from 34), d: Glycol-chitosan 
(adapted from 35), e: Poly(vinyl)alchohol (adapted from 36), f: Pluronic F127 (a=96, b=69) 
(adapted from 37) 
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antigen (e.g., ovalbumin), is being developed to deliver breast cancer antigens to dendritic 

cells (DCs) and enhance their recognition by T cells in the tumor microenvironment. They 

are biodegradable, biocompatible, and have low toxicity (38, 39). Natural polymers have 

also been used to prepare nanoparticle adjuvants, such as chitosan. Chitosan-based NPs 

have been extensively studied due to their biocompatibility, biodegradability, nontoxic 

nature and their ability to be easily converted into desired shapes and sizes (40). The use of 

NPs as a form of a vaccine enhances antigen stability and immunogenicity, and enables 

targeted delivery and slow release. Many of nanoparticle vaccines varying in their 

properties have been approved for human use. Still, a lack of understanding regarding the 

in vivo behavior of nanoparticles remains. 

Liu et al. (41) reported a nanoparticle-based multi-adjuvant whole cell tumor vaccine for 

cancer immunotherapy. PLGA NPs were tested as a carrier of whole cell tumor vaccine. 

They proved a sufficient inhibition of tumor growth and metastasis, as well as prevention 

of recurrence. 

 

1.4 Quality-by-Design 
 

To assure pharmaceutical quality in development or manufacturing process, a concept 

called Quality-by-design (QbD) has been applied within pharmaceutical companies in the 

last few years. It consists of systematic methods to guarantee the quality of a finished 

product and all components and processes involved in the production. QbD provides 

insights throughout the development process, so any quality problem can be efficiently 

analyzed and its cause quickly identified. QbD approach is based on concepts from the 

International Conference on Harmonisation of technical requirements for registration of 

pharmaceuticals for human use (ICH) Q8, Q9 and Q10 guidelines, principles of which 

have been introduced to the pharmaceutical industry by FDA. Companies can acquire 

several benefits for development and manufacturing if properly implementing QbD, such 

as: (i) more efficient consumption of time and costs; (ii) simpler meeting submission 

guidelines and expectations; (iii) reducing time for approval; (iv) quicker response to any 

manufacturing deviation (42-46). 

Throughout process development, raw materials (drug substance and excipients),  process 

parameters (equipment, batch size, operating conditions, environmental conditions) and 
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quality attributes (physical, chemical or microbiological typical features of components) 

are investigated. The purpose is to ascertain the critical quality attributes (CQA), critical 

process parameters (CPP) and also to establish any possible relations between them. CQA 

are physical, chemical, biological or microbiological properties or characteristics that must 

be controlled directly or indirectly to ensure the quality of the product (e.g., particle size). 

CPP are process inputs that have a direct and significant influence on critical quality 

attributes when they are varied within regular operational range (e.g., sonication 

conditions) (42, 47). 

 

1.4.1 Design of experiments  
 

Experiments are comonly used for solving problems in many areas of daily life or within 

specific scientific areas. Simplified, an experiment is an observation which leads to 

particular information about a studied object (49). The concept of Design of Experiments 

(DoE) selects a diverse and representative set of experiments in which all factors are 

independent of each other despite being varied simultaneously. With the design each 

experiment is performed and then conclusions about the studied object are gathered. The 

intent is to optimize a process or system, hence minimizing the number of performed 

experiments and lowering costs. With DoE the most informative combination of factors is 

chosen, thus DoE represents an effective and economical solution (49). 

With DoE the combined influence of all factors is evaluated, therefore it is possible to 

obtain more precise data about the studied process or system (49, 50). There are two types 

of variables when we perform experiments using the concept of DoE: responses and 

factors (Figure 6). Responses give us information about the studied system and  factors are 

used to manipulate them (49, 50). 

 

  

 

 

 

 

 

Figure 6: Factors and responses. The determined responses describe the 
characteristics of the process or system. The characteristics can be altered for a 
desired response profile if the most influential factors are changed (adapted from 
50). 
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1.4.2 Design space 
 

According to the ICH guidelines, the design-space (DS) is the region where all 

specifications are fulfilled at a specified risk level. The ICH draft guidance: Q8(R2) has 

outlined QbD principles for pharmaceutical development where the concept of DS was 

presented. ICH Q8 defines DS as “the multidimensional combination and interaction of 

input variables (e.g. material attributes) that have been demonstrated to provide assurance 

of quality” (44). The aspects defining the DS are the response specifications, prediction 

models and the accepted risk level. Since each response may have a unique model 

describing the interaction between the investigated factors and the corresponding response, 

the resulting DS region will be limited from different directions. This can result in a DS 

volume that is irregular in its shape. A resolution is then to divide the experimental region 

into smaller sections and estimate the probability of fulfilling the specifications in each 

section (Figure 7). If the experimental region is divided into sub regions, the predictions 

from the models can be used to estimate how well the specifications are fulfilled in each 

sub region. With different simulations and DoE models we can estimate the risk of getting 

predictions that are outside the limits in each investigated section. The risk of getting 

predictions outside the limits is estimated as Defect Per one Million Opportunities 

(DPMO). With this strategy any type of DS region can be described and it will allow the 

flexibility to use a variety of precision estimates for the factors that are present in the 

models. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7: The design space (DS). The DS is a region within the 
investigated area spanned by the experimental design. This 
investigated area is often designated experimental region, as in 
the picture here, or knowledge space (adapted from 50). 
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The range of normal operation is defined as the upper and/or lower limits for the critical 

raw material attributes and process parameters. Within these limits, materials are 

controlled during the process in order to assure reproducibility. The operating range should 

be within the DS. When it is smaller than the DS, the process is considered robust.  

Conventional techniques used for process control, include a combination of mathematical 

and knowledge-based models. Testing during a process is very important for monitoring 

and controlling. When any in-process testing result does not meet predefined limits, the 

batch is discarded and the cause of the failure is identified and fixed if possible. When 

applying the QbD approach, any inadequacy in the process steps is recognized during the 

design phase (42, 50). 

 

1.5 Modelling  
 

The basic idea of modelling is to alter all significant factors at the same time, over a set of 

prepared experiments and then combine the results by means of a mathematical model. The 

model is then used for interpretation, optimization and further predictions.  

Objectives of modelling and experimental design include detecting factors that have a real 

impact on the responses, detecting factors that have significant interactions (synergies or 

antagonisms), choosing the best parameters of the factors for the best performance of a 

system, and establishing  the predicted values of the responses for given parameters of the 

factors. 

An important factor is a factor that causes consequential changes (effects) in the response 

when it varies. We need to differentiate between qualitative and quantitative factors. The 

values of a qualitative factor have only distinct values, while quantitative factor have a 

given range on a continuous scale. On the other hand, response is the general condition of a 

studied system during the change of the factors and can differe in nature (e.g., numerical, 

cathegorical). In the screening stage simple models (linear or linear with interactions) are 

used. The data collected during experiments defined by the experimental design is used to 

estimate the model coefficients. The model represents the relationship between the 

response Y and the factors X1, X2, etc. Multiple linear regression (MLR) and Partial least 

squares (PLS) regression are the preferred methods to estimate model coefficients (50). 
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The use of computers to analyze chemical data has grown dramatically in the last twenty 

years, partly due to recent advances in "hardware" and "software". As a result a causal 

predictive model is obtained. It shows the importance of all factors and their interactions. 

Models can then be summarized as informative plots. It is important to know that a model 

is an approximation. It is very useful for understanding important mechanisms and for 

manipulating units in the process according to a desired outcome (50). 

 

Linear regression: A regression equation (or function) is linear when it is linear in its 

parameters. The aim of linear regression is to adjust the values of the parameter and  

constant to find the line that best predicts Y (response) from X (factors). A linear equation 

consists of the results for each term: 

Response = constant + parameter * factor + ... + parameter * factor + residual 

 

Y = b o + b1X1 + b2X2 + ... + bkXk + e                                                                                                     (equation 1) 

 

The equation must be linear in its parameters but it is possible to transform the factor 

variables in ways that produce curvature. For instance, you can include a squared variable 

or use log and inverse functional forms that are linear in the parameters to produce 

different types of curves (variable transformation) (50-53). 

 

Nonlinear regression: With this regression any model can be fit to the data. Compared to a 

linear model, non-linear models can take many different forms (Figure 8). If the equation 

does not fit for a linear equation (equation 1), it is nonlinear. These functions can have 

more than one parameter per a factor variable. A computational approach that can be 

explained using calculus and matrix algebra needs to be used. The method usually requires 

initial estimated values for each parameter (50-53). 

 

 

 

 

 
Figure 8: Graphic representation of linear and 
nonlinear function. 
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1.6 Previous studies 

 
There are several research papers on implementing the concepts of DoE and QbD approach 

into the development of nanoparticulate systems. 

Punna et al. (54) developed solid lipid NPs for oral delivery of raloxifene, in order to 

improve drug's oral bioavailability, using DoE to optimize the manufacturing process of 

solid lipid NPs. Since many variables were involved in the process, a single design could 

not be sufficient. Therefore, they followed a hybrid-design approach: Plackett Burman 

design (PBD) for initial screening, followed by Box–Bhenken design (BBD), a subtype of 

response surface methodology (RSM) design for process optimisation. Significant 

processing conditions for development of these solid lipid NPs were identified and 

optimized, presenting a good correlation between actual and predicted values. 

Yerlikaya et al. (55) implemented QbD approach into development and evaluation of 

paclitaxel NPs. CQA were determined to be Z-average, ZP and EE. Furthermore, the 

Ishikawa diagram was used to determine potential risk factors, where eight potential risk 

factors were identified and then further evaluated with experimental designs. PBD design 

was used for further screening  and finally BBD design for optimisation of NPs.  

In the study by Soema et al. (56), the effect of lipid composition on the physicochemical 

characteristics and adjuvanticity of liposomes was investigated. DoE approach was used 

for developing peptide-containing liposomes containing various lipids and different 

peptide concentrations. The acquired data of characteristics were fitted with regression 

models. These models were applied to predict a lipid composition that resulted in a 

liposome with a target zeta potential. To investigate the effect of the liposome composition 

on liposome size, zeta potential and liposome-induced DC maturation, a linear mixture 

model was selected with MODDE 10 (Umetrics) software. 

 

These studies, including this thesis work, proved that the DoE and QbD approach are 

useful for understanding formulation and process parameters and are applicable for the 

development and optimisation of complex drug delivery systems.  
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2 OBJECTIVES 

 

The aim of the presented thesis is to formulate, characterise and model modified drug 

delivery systems based on poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) 

containing ovalbumin (OVA) as the model antigen prepared by a modified double 

emulsion solvent evaporation method previously established at the host laboratory, and 

will be intended for use as a nanoparticle-based therapeutic vaccine for breast cancer 

immunotherapy. Taking advantage of the developed models, a quality-by-design approach 

will be implemented for the manufacturing of these systems. 

To modify physicochemical characteristics of NPs, different excepients will be tested in 

various proportions. Variations will be made in amount of incorporated OVA, glycol-

chitosan (CS) and  concentration of poly(vinyl)alcohol  (PVA) in the internal aqueous 

phase (IP). PVA and Pluronic® F127 (PF127) will also be tested as external aqueous phase 

(EP) surfactants. The PLGA NPs size (Z-average), zeta potential (ZP), polydispersity index 

(PDI), antigen encapsulation efficiency (EE) and loading capacity (LC) will be evaluated. 

 

The NPs are intended for subcutaneous or intratumoral administration, therefore the 

following specific properties are desirable:  

 

• Z-average between 50 and 200 nm  

• ZP under 5 mV (positive or negative)  

• PDI lower than 0.2;  

 

Furthermore, we will model data for the process interpretation following a linear modelling 

approach. As a result, we want to establish a causal predictive model.  

We would like to determine (i) which factors have a real impact on the responses; (ii) 

which factors have interactions that are statistically significant (synergies or antagonisms); 

(iii) what are the best factor parameters to achieve optimal manufacturing conditions for 

best performance; and (iv) what are the predicted values of the responses for the given 

factor parameters. Finally, design-space will be established and additional validation 

experiments performed. 



  

16 
 

3 MATERIALS AND METHODS 

 

3.1 Materials 
  

3.1.1 Equipment 
 

1.  Analytical balance VWR LA314, VWR International, LLC (USA)  

2.  Vortex mixer 230V, Labnet, Labnet Internacional (USA) 

3.  Ultrasonic processor  SonifierVibracell VC 375, Sonics & Materials (INC. DANBURY, 

CT. USA) 

4.  Centrifuge Beckman Coulter, lnc, Avanti® J-E Centrifuge JA-20 (USA) 

5.  Zetasizer Nano S, Malvern Instruments (Worcestershire, UK) 

6.  Zetasizer Nano Z, Malvern Instruments (Worcestershire, UK) 

7.  Folded Capillary cell (DTS1060), Malvern Instruments (Worcestershire, UK) 

8.  Cell ZEN0112, Malvern Instruments (Worcestershire, UK) 

9.  Beckman System Gold High Performance Liquid Chromatograph: UV-vis Detector 

(Beckman 166), Beckman 126 solvent module, Midas autosampler 

10. Shodex PROTEIN KW-803 series column (8.0 mm ID x 300 mm, 5 µm particle size, 

300 Å pore size) 

11. Eppendorf® tubes 1.5 mL, 2 mL, 15 mL, 50 mL 

12. Nalgene® centifuge tubes   

13. Laboratorial material: spatules; beakers; glass vials; gratuated cylinder; micropipettes 

5000 µL, 1000 µL, 200 µL, 20 µL, 10 µL; magnetic stirrer plate; Al foil; heaters                                                

 

3.1.2 Chemicals 
 

1.  Dichloromethane (DCM),  Merck (Darmstadt, Germany) 

2.  Poly(lactic-co-glycolic acid) (PLGA), Resomer® RG 502 (lactide:glycolide 50:50, Mw 

7,000-17,000 g/mol), Boehringer Ingelheim GmbH (Ingelheim, Germany)   

3.  Glycol-chitosan (CS) , G7753,  ≥60% (titration), crystalline, Sigma-Aldrich (St. Louis, 

MO, USA) 
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4.  Ovalbumin (OVA), A5503, albumin from chicken egg white (molecular weight (Mw) 

45,000 Da), Sigma-Aldrich (St. Louis, MO, USA) 

5.  Poly(vinyl) alcohol (PVA), Mw 13,000~23,000 Da, 87-89% hydrolyzed, Sigma-Aldrich 

(St. Louis, MO, USA) 

6.  Pluronic® F127 (PF127),  P2443, Mw 12,600 Da, Sigma-Aldrich (St. Louis, MO, 

USA) 

7.  Millipore Milli-Q ultrapure water (resistivity ≥ 15.0 MΩcm) 

8.  Phosphate buffered saline (PBS), 0.01 M pH 7.4, Sigma-Aldrich (St. Louis, MO, USA) 

9.  Calcium chloride (CaCl2), Sigma-Aldrich (St. Louis, MO, USA) 

10. Magnesium chloride (MgCl2), Sigma-Aldrich (St. Louis, MO, USA) 

 

3.1.3 Prepared solutions 
 

1.  Dulbecco's PBS (DPBS) (0.01 M pH 7.4, [+] 0.9 mM CaCl2, 0.45 mM MgCl2) 

2.  Mobile phase for HPLC (50 mM Sodium phosphate buffer (pH 7.0) + 0.3 M NaCl) 

3.  Standard stock solution of OVA (0.125 mg/mL) 

 

 

3.2 Methods 
 

3.2.1 Preparation of nanoparticles 
 

PLGA NPs were prepared using a double emulsion (w/o/w) solvent evaporation method as 

explained before (Figure 4). The internal aqueous phase (IP) consisted of 25 µL of 2% 

(w/v) PVA,  6% (w/v) PVA, 10% (w/v) PVA or 14% (w/v) PVA and 25 µL of CS aqueous 

solution (2 mg/mL), in which OVA (125 µg) was dissolved. This IP was then emulsified 

with an organic solution (10 mg PLGA dissolved in 200 µL DCM), under continuous 

sonication for 15 s, at 70 W, using an ultrasonic processor (SonifierVibracell VC 375, 

Sonics & Materials (INC. DANBURY, CT. USA)). Single w/o emulsion was formed. 

After,  2% (w/v) PVA solution (surfactant in IP) was added to the single w/o emulsion and 

sonicated under the same conditions. The obtained double w/o/w emulsion was added 

dropwise to the external aqueous phase (EP) (20 mL 0.3% (w/v) PVA or 20 mL 0.3% 
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(w/v) PF127) and magnetically stirred at 37 °C for 1h, enabling DCM evaporation and NPs 

formation. The details of formulations are shown in Table III. PLGA NPs were collected 

through three centrifugations (22,000 × g, 40 min, 4 °C) using Centrifuge Beckman 

Coulter (lnc, Avanti® J-E Centrifuge JA-20, USA) and washed with millipore ultrapure 

water before each centrifugation to remove the excess of non-encapsulated antigen and 

surfactant, for formulations with or without CS, respectively. NPs were then dispersed in 

DPBS and kept at 4 ºC (Eppendorf® tubes 2 mL) for following experiments. After each 

centrifugation, supernatants were stored and kept at 4 ºC, or frozen at -20 ºC (Eppendorf® 

tubes 2 mL, 15 mL) until analysis. For each OVA-loaded NPs and CS containing NPs, 

plain NPs were made. Each formulation was made in triplicate or more. 

 

3.2.1.1 Full factorial (Mixed) design 
 

In the early stages of an investigation, several screening designs can be used to find which 

factors are significant and if their ranges need to be modified. When choosing full factorial 

designs it is possible to work with interaction models, i.e. all interactions possible. They 

can be created at 2 or more factor levels, comprising all the possible combinations of the 

factor levels (e.g., for p factors at 2 levels one needs N =2p runs). Full factorial designs are 

orthogonal (balanced), hence the estimated effect of a factor is independent of the effects 

of all other factors. Full factorial designs with factors of a different number of levels are 

called Full factorial mixed designs (50, 53). Experimental design matrix of performed 

experiments (for NPs with or without loaded OVA) is shown in Table II. All together 32 

experiments were designed.   
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Table II: Experimental design  matrix. Coding in italics refers to combinations of factors A, B 
and C; with numbers 0, 1, 2, 3 implying the level of factor. 

 

Table III: Details of prepared formulations. 

Factor A (surfactant in EP)  

Factor B  

(CS in IP (µg)) 

 

Factor C  

(PVA in IP (%)) 0 (PVA) 1 (PF127) 

000 100 0 (0  µg) 0 (2% PVA) 

001 101 0 (0  µg) 1 (6% PVA) 

002 102 0 (0  µg) 2 (10% PVA) 

003 103 0 (0  µg) 3 (14% PVA) 

010 110 1 (25  µg) 0 (2% PVA) 

011 111 1 (25  µg) 1 (6% PVA) 

012 112 1 (25  µg) 2 (10% PVA) 

013 113 1 (25  µg) 3 (14% PVA) 

Formu-    

lation IP 

surfactant  

in IP 

surfactant  

in EP 

Formu- 

lation IP 

surfactant 

in IP 

surfactant  

in EP 

F1b 2% PVA, H2O 2% PVA 0.3% PVA F9b 2% PVA, H2O 2% PVA 0.3% PF127 

F1o 2% PVA, OVA 2% PVA 0.3% PVA F9o 2% PVA, OVA 2% PVA 0.3% PF127 

F2bC 2% PVA, CS 2% PVA 0.3% PVA F10bC 2% PVA, CS 2% PVA 0.3% PF127 

F2oC 2% PVA, CS, OVA 2% PVA 0.3% PVA F10oC 2% PVA, CS, OVA 2% PVA 0.3% PF127 

F3b 6% PVA, H2O 2% PVA 0.3% PVA F11b 6% PVA, H2O 2% PVA 0.3% PF127 

F3o 6% PVA, OVA 2% PVA 0.3% PVA F11o 6% PVA, OVA 2% PVA 0.3% PF127 

F4bC 6% PVA, CS 2% PVA 0.3% PVA F12bC 6% PVA, CS 2% PVA 0.3% PF127 

F4oC 6% PVA, CS, OVA 2% PVA 0.3% PVA F12oC 6% PVA, CS, OVA 2% PVA 0.3% PF127 

F5b 10% PVA, H2O 2% PVA 0.3% PVA F13b 10% PVA, H2O 2% PVA 0.3% PF127 

F5o 10% PVA, OVA 2% PVA 0.3% PVA F13o 10% PVA, OVA 2% PVA 0.3% PF127 

F6bC 10% PVA, CS 2% PVA 0.3% PVA F14bC 10% PVA, CS 2% PVA 0.3% PF127 

F6oC 10% PVA, CS, OVA 2% PVA 0.3% PVA F14oC 10% PVA, CS, OVA 2% PVA 0.3% PF127 

F7b 14% PVA, H2O 2% PVA 0.3% PVA F15b 14% PVA, H2O 2% PVA 0.3% PF127 

F7o 14% PVA, OVA 2% PVA 0.3% PVA F15o 14% PVA, OVA 2% PVA 0.3% PF127 

F8bC 14% PVA, CS 2% PVA 0.3% PVA F16bC 14% PVA, CS 2% PVA 0.3% PF127 

F8oC 14% PVA, CS, OVA 2% PVA 0.3% PVA F16oC 14% PVA, CS, OVA 2% PVA 0.3% PF127 
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3.2.2 Physicochemical characterization of nanoparticles 
 

3.2.2.1 Size and polydispersity index 
 

Mean size (Z-average) and polydispersity index (PDI) of NPs were determined by 

Dynamic Light Scattering (DLS) using Zetasizer Nano S (Malvern Instruments, 

Worcestershire, UK). 50 µL of each batch of NP suspension  (20  mg/mL) plain or loaded, 

was suspended in 950 µL DPBS in Eppendorf® tubes (1.5 mL). The diluted suspension 

was primarily introduced into a cell (Cell ZEN0112, Malvern Instruments, Worcestershire, 

UK) to evaluate the Brownian motion of NPs based on laser light scattering, measuring 

size and PDI. Working conditions and measurments were always maintained constant to 

obtain comparable results. Each diluted suspension was measured in triplicates, where each 

size and PDI data corresponds to 10 measurments. 

 

 

3.2.2.2 Zeta potential 
 

After size and PDI analysis,  the same suspension was inserted into an electrode specific 

cell (Folded Capillary cell (DTS1060), Malvern Instruments, Worcestershire, UK) for 

electrophoretic mobility. Surface charge of NPs was inferred from the determination of 

zeta potential (ZP), assessed by Laser Doppler Velocimetry (LDV) in combination with 

M3 Phase Analysis Light Scattering (M3-PALS), using Zetasizer Nano Z (Malvern 

Instruments, Worcestershire, UK), at 25 ºC. Working conditions and measurments were 

always maintained constant, due to dependance of ZP on pH and ionic strength of  the 

dispersant. Each diluted suspension was measured  in triplicates where each ZP 

measurment represents 100 readings.  

 

 

3.2.3 Ovalbumin loading analysis 
 

Supernatants were collected in triplicates from each centrifugation, performed for each 

batch of NPs. Before each determination, supernatants were defrosted at room temperature.  
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A calibration curve, using OVA aqueous solution (obtained from stock solution of 1000 

µg/mL) and first supernatants recovered after centrifugation of plain NPs, in the 

concentration  a range of 0–10 μg/mL was prepared (Table IV). 

 

 

Table IV: Solutions for preparing the calibration curve. 

 

 

The amount of encapsulated protein OVA was quantified indirectly by High Performance 

Liquid Chromatography (HPLC) using a Beckman System Gold High performance Liquid 

Chromatograph (UV-vis Detector (Beckman 166), Beckman 126 solvent module, Midas 

autosampler). Samples (20 µL; supernatants) were injected in the column (Shodex 

PROTEIN KW-803 series column (8.0 mm ID x 300 mm, 5 µm particle size, 300 Å pore 

size)) and eluted with buffer (50mM Sodium phosphate buffer (pH 7.0) + 0.3M NaCl), at 

room temperature (run time: 20 min, flow rate: 1 mL/min). OVA elution from each 

supernatant was monitored following absorption at 220 nm. 

 

 

The entrapment efficiency (EE,% (w/w)) is the encapsulated protein in the polymeric 

matrix of NPs over the initial amount of protein (Equation  2) expressed in%. 

 

EE (%) =  𝑎𝑚𝑜𝑢𝑛𝑡 𝑜𝑓 𝑒𝑛𝑐𝑎𝑝𝑠𝑢𝑙𝑎𝑡𝑒𝑑 𝑝𝑟𝑜𝑡𝑒𝑖𝑛
𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑎𝑚𝑜𝑢𝑛𝑡 𝑜𝑓 𝑝𝑟𝑜𝑡𝑒𝑖𝑛

  x 100                                                    (Equation 2) 

 

 

Solutions 

Final 

concentration 

(µg/mL) 

Volume of OVA solution  with first 

supernatant of plain NPs (50µg/mL)  

(µL) 

Volume of first 

supernatants of plain NPs 

(µL) 

S0 0 0 1000 

S1 0.5 10 990 

S2 2 40 960 

S3 4 80 920 

S4 5 100 900 

S5 10 200 800 
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The loading capacity (LC, µg/mg) is defined as the protein amount (µg) per mg of NPs 

(Equation 3). 

 

LC (µg/mg) =  𝑎𝑚𝑜𝑢𝑛𝑡 𝑜𝑓 𝑒𝑛𝑐𝑎𝑝𝑠𝑢𝑙𝑎𝑡𝑒𝑑 𝑝𝑟𝑜𝑡𝑒𝑖𝑛
𝑡𝑜𝑡𝑎𝑙 𝑎𝑚𝑜𝑢𝑛𝑡 𝑜𝑓 𝑝𝑜𝑙𝑦𝑚𝑒𝑟𝑠

                                                       (Equation 3) 

 

The amount of encapsulated OVA was calculated using the standard calibration curve and 

equations, as mentioned  above. 

 

3.2.4  Modelling  
 

To construct mathematical models, explaining NPs size, PDI, ZP and OVA loading 

analysis, the software Modde version 10.1 (Umetrics, Sweden) was used. The software 

uses the principles of DoE to analyze processes or products and helps the user to get 

valuable information from the raw data. With different analyzing and visualization tools, 

the user gets help to understand complex processes and has the opportunity to improve the 

processes by performing suggested experimental designs. With a user-friendly design 

wizard and easy visualization methods, the evaluation of raw data and the corresponding 

decision making is made simple. 

In order to enter the data in this computer program, factors (% PVA, surfactant in EP, 

OVA, glycol chitosan) and responses (Z-average, PDI, ZP, amount of encapsulated OVA) 

were determined. Figure 9 illustrates the specified factors and responses entered in the 

software for the construction of models and Table V describes the characteristics of factors 

and responses.  
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Table V: Characteristics of factors and responses. 

Factors Description 

% PVA 
The percentage of PVA used in IP. Values varied within 2%, 6%, 10% and 14%. 

Factor type is multilevel. 

s. EP 
The type of the surfactant used in EP. PF 127 or PVA (both 0.3%) were used. Factor 

type is qualitative. 

OVA 
OVA used in preparation of NPs. Factor type is quantitative and constant, considering 

only NPs with encapsulated OVA were included in modelling. 

CS 
CS used in preparation of NPs. Factor type is multilevel, since CS was or was not 

used in preparation of NPs. 

Responses Description 

Z-ave 
Results from measuring size of NPs were recalculated into average values (from 

triplicates or more of each formualtion). 

PDI 
Results from measuring PDI of NPs were recalculated into average values (from 

triplicates or more of each formulation). 

ZP 
Results from measuring ZP of NPs were recalculated into average values (from 

triplicates or more of each formulation). 

E.O. 

Results obtained from HPLC measurments, recalculated into average values. 

Transformed into quantity (µg) of encapsulated OVA in NPs (triplicates or more) for 

each formulation. 

 

Figure 9: Specified factors and responses. 
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After determination of the data illustrated in Figure 9 in Modde, results (data collected 

from measurments described above) for responses were inserted. The study design 

consisted of twenty runs (including replicates) with zero centre points. The experiment was 

designed and analyzed using Modde. Work then proceeded to the fitting, optimization and 

validation of models for Z-average, PDI, ZP and amount of encapsulated OVA. The 

models were fitted with the PLS algorithm.  

 

3.2.4.1 Partial least squares (PLS) regression 
 

PLS regression is appropriate when one wants to fit a model that can represent the 

variation of all the responses to the variation of the factors (dealing with many responses 

simultaneously, taking their covariances into account) and when the number of degrees of 

freedom do not allow the application of MLR. An overview of how factors affect the 

responses is the target. It finds a linear regression model by projecting the predicted 

variables and the observable variables to a new space. 

PLS finds the relationship between a matrix Y (response variables) and a matrix X (factor 

variables) expressed as:  

 

Y = XB+E                                                                                                             (equation 4) 

 

The PLS model consists of a simultaneous projection of the Y and X spaces on a low 

dimensional hyper plane with new coordinates T (summarizing X) and U (summarizing 

Y), and then relating U to T. This kind of analysis is desirable to approximate X and Y 

well and to maximize the correlation between X and Y in the projected space (between U 

and T). Loadings are the weights with which each variable contributes to formation of the 

main components (P and Q) (Figure 10). 

 

X = TPt + E                                                                                                           (Equation 5) 

Y = UQt + E                                                                                                         (Equation 6) 

U = bT                                                                                                                  (Equation 7) 
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The number of significant PLS components (the dimensionality), is determined by cross-

validation (CV), where the predictive residual sum of squares (PRESS) is computed for 

each model dimension. Modde selects automatically the number of PLS dimensions that 

give the smallest PRESS. PRESS is then re-expressed as 

  

Q2 = (1 - PRESS/SSY )                                                                                         (Equation 8) 

 

where SSY is the sum of Y's squares (49). 

Since PLS regression was the adopted method, the number of latent variables should be 

optimized. This optimization was done automatically by the software Modde using the 

cross-validation type leave-one-out (50). 

 

3.2.4.2 Analysis  
 

To examine the model fit, different approaches are considered. First, the summary of fit 

plot displays accuracy of a model with four columns: (i) R2 shows the model fit. A model 

with R2 of 0.5 is a model with rather low significance; (ii) Q2 estimates future predictions 

precision. Roughly, it should be greater than 0.1 for a significant model and greater than 

0.5 for a good model. Q2 is the best and most sensitive indicator; (iii) Model validity is a 

test of diverse model problems. A value less than 0.25 for model validity indicates 

statistically significant model problems, such as the presence of outliers, an incorrect 

model, or a variable transformation problem. A low value here may also indicate that a 

term, such as an interaction or square is missing. When the pure error is very small 

(replicates almost identical), the model validity can be low even though the model is good 

Figure 10: A geometric representation of PLS regression. 
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and complete; (iv) Reproducibility explains the variation of the replicates compared to 

overall variability. The value should be greater than 0.5 (50). 

After, diagnostics are made with a number of diagnostic plots, for instance residual plots to 

find outliers and analysis of variance (ANOVA) to  review the lack of fit, etc. To interpret 

the influence of terms on the model, the coefficients and effect plots and lists can be used.  

If  any outliers are discovered or we want to remove or add a term to the model we can 

refine the model. 

 

3.2.4.3 Predictions  
 

When one is satisfied with the model, one can use the model to make further predictions 

and find the area (design space) with  the optimal conditions. Then, one can validate the 

predicted values by performing a new set of the experiments, to confirm that predictions 

are reliable. 
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4 RESULTS AND DISCUSSION 

 

4.1 Characterization of PLGA nanoparticles   
 

In the nanoparticle formulation process, the organic phase was composed of 10 mg PLGA 

powder dissolved in 200 µL of DCM. Differences in IP between NPs were related to PVA 

concentration (2% (w/v) PVA, 6% (w/v) PVA, 10% (w/v) PVA or 14% (w/v) PVA 

solutions were used), aditions of CS (0% (wCS/wpolymer) or 0.25% (wCS/wpolymer) were 

added) and additions of OVA (0 µg or 125 µg was added). As a surfactant in IP, 400 µL of 

2% (w/v) PVA solution was used in all formulations. Formulations also varied depending 

on the surfactant used in the EP, namely 20 mL of 0.3% (w/v) PVA or 20 mL of 0.3% 

(w/v) PF127 solutions were used. For all formulations the same production process was 

used. Multiple emulsions w/o/w were formulated. 

 

We can divide results into two groups: plain NPs and NPs with encapsulated OVA. 

Furthermore, each group can be divided in terms of the concentration of PVA used in IP, 

incorporation of CS into IP and the type of surfactant used in EP (PVA or PF127). Plain 

NPs were used as a control, hence their results will not be considered for modelling since 

our interest is OVA loaded NPs, also containing CS.  

Changes in formulations were made with the purpose of reducing toxicity and meeting the 

desired requirements as close as possible. We want Z-average of NPs to be between 50 and 

200 nm, ZP under 5 mV (positive or negative) and PDI lower than 0.2, so NPs would be 

suitable for vaccine use. Results of measured Z-average, PDI, ZP, EE and LC are shown in 

Table VI. Statistical analysis of results and models will be performed with Modde. Note 

that all statistical tests in this work were performed to a significance level of 0.05.
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Table VI: Z-average, PDI, ZP, EE and LC ( Mean ± SD; n ≥3). Details of prepared formulations were described in Table III. 

Formulation Z-average 
(nm) PDI ZP (mV) EE (%) LC 

(µg/mg) Formulation Z-average 
(nm) PDI ZP (mV) EE (%) LC 

(µg/mg) 
F1b 258 ± 5 0.094 ± 0.019 -1.77 ± 0.36   F9b 419 ± 33 0.580 ± 0.070 -1.74 ± 0.21   
F1o 317 ± 3 0.177 ± 0.003 -3.56 ± 0.39 80.68 10.09 F9o 403 ± 6 0.391 ± 0.047 -5.75 ± 0.84 82.55 10.32 

F2bC 310 ± 7 0.184 ± 0.017 0.92 ± 0.96   F10bC 379 ± 6 0.447 ± 0.010 -0.19 ± 0.63   
F2oC 359 ± 8 0.208 ± 0.022 0.64 ± 0.51 81.93 10.24 F10oC 444 ± 11 0.304 ± 0.053 -1.01 ± 0.63 80.97 10.12 

F3b 223 ± 6 0.291 ± 0.033 -1.34 ± 0,35   F11b 444 ± 19 0.501 ± 0.018 -1.16 ± 0.23   
F3o 208 ± 5 0.187 ± 0.019 -1.95 ± 0.65 81.44 10.18 F11o 311 ± 3 0.334 ± 0.048 -2.27 ± 0.34 71.24 8.9 

F4bC 388 ± 11 0.462 ± 0.045 -0.19 ± 0.19   F12bC 299 ± 5 0.38 ± 0.005 -0.31 ± 0.81   
F4oC 295 ± 1 0.309 ± 0.034 -0.84 ±  0.11 88.94 11.12 F12oC 420 ± 17 0.461 ± 0.033 -0.71 ± 0.57 81.88 10.24 

F5b 197 ± 6 0.189 ± 0.016 -1.45 ± 0.27   F13b 245 ± 12 0.28 ± 0.018 -1.39 ± 0.39   
F5o 210 ± 3 0.217 ± 0.019 -1.79 ± 0.19 79.5 9.94 F13o 233 ± 4 0.219 ± 0.021 -2.14 ± 0.35 74.81 9.35 

F6bC 232 ± 9 0.252 ± 0.029 -0.083 ± 0.34   F14bC 243 ± 7 0.3 ± 0.012 -1.05 ± 0.31   
F6oC 201 ± 3 0.137 ± 0.013 -1.59 ± 0.71 85.95 10.74 F14oC 420 ± 14 0.5 ± 0.013 -0.70 ± 0.58 76.64 9.58 

F7b 190 ± 5 0.1 ± 0.022 -2.0 ± 0.50   F15b 472 ± 43 0.558 ± 0.011 -1.27 ± 0.25   
F7o 191 ± 6 0.129 ± 0.027 -2.07 ± 0.71 76.66 9.58 F15o 219 ± 4 0.293 ± 0.013 -2.13 ± 0.41 84.91 10.61 

F8bC 304 ± 8 0.405 ± 0.002 0.26 ± 0.45   F16bC 234 ± 5 0.256 ± 0.024 -0.32 ± 0.98   
F8oC 270 ± 6 0.324 ± 0.005 -0.65 ± 0.28 83.6 10.45 F16oC 429 ± 11 0.38 ± 0.019 -0.48 ± 1.20 82.51 10.31 
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4.1.1 Particle size 
   

Size is an important aspect of nanoparticulate systems. It has a significant influence on the 

physicochemical properties, degradation of NPs in vivo, NPs intracellular uptake, toxicity 

and efficacy. Particle size also has an impact on drug loading, drug release and stability of 

particles. In this study, Z-average was measured by dynamic light scattering (photon 

correlation spectroscopy) with Zetasizer Nano S. Each sample was measured in triplicate. 

Results are shown in Table VI.  

Different concentrations (2, 6, 10 and 14% w/v) of PVA in IP were used in order to assess 

its effect on NPs size. Higher concentrations of PVA have increased emulsion stability in 

general and thus the size of both plain and antigen-loaded NPs (both without CS) mostly 

decreased when higher concentrations of PVA in IP were used. However, in the case of 

plain NPs with PF127 used in EP, this trend is not visible. We can assume, since PF127 is 

a bigger molecule (12,5 kDa) than PVA, it was the former that affected the size of NPs. 

The viscosity of IP increases as the concentration of PVA increases. This decreases the 

impact of shear stress which is the most important independent variable liable for size 

reduction, leading to system instability in consideration of the small volume of this phase. 

Therefore at 14% PVA in IP we have noticed that NPs (F15b) were the biggest due to an 

increased viscosity, the size of PF127 molecule and the absence of additional stabilization 

of OVA. Another interesting observation arises from OVA loaded NPs (without CS) that 

are smaller compared to plain controls (F3o, F9o F11o, F13o), which could be due to the 

additional stabilization of emulsion by OVA. We can also see that all NPs (plain, loaded, 

with or without CS), except F4bc and F8bc, with PF127 in EP have higher Z-average 

values. When CS was added to plain or OVA loaded NPs, we expected higher Z-average 

of NPs, since it represents an addition of a big molecule (82 kDa). In the case of PVA used 

in EP, NPs Z-average did increase, except in F6oc (10% PVA in IP) where Z-average was 

lower. This could impact the formulation process regarding our desire for OVA and CS 

containing NPs with an appropriate size range. The opposite results with plain NPs occured 

with PF127 in EP when CS was added Z-average decreased. However, Z-average of OVA 

loaded NPs, when CS was added, also increased. The best result, considering we want 

OVA and CS included, was obtained by F6oc. In addition, the low standard deviation (SD) 
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obtained for the Z-Average (with PVA in EP) implies that the method used for NPs 

preparation is reproducible. 

 

4.1.1.1 Modelling 
 

As mentioned before, only OVA loaded NPs (with or without CS) were analyzed. In 

Figure 11, we can see the coefficients and effects plots for Z-average. In the coefficients 

plot we can assess the significance of model terms (factors). A significant model term is 

one with a large distance from y=0 as well as having an uncertainty level that does not 

extend across y=0 (50). During the modelling process non-significant terms can be 

excluded in order to obtain the best model. The most significant factors that explain the Z-

average variability are surfactants in EP (PVA and PF127), CS and% (w/v) of PVA in IP, 

which means they have the biggest influence on NPs size. Next, in the effects plot, we can 

see how the significant factors are influencing Z-average. The effect represents the change 

in the response values when one factor varies over its range and all other factors are kept in 

the same proportion as in the reference formulation (50). Concentration of PVA in IP has a 

negative effect on Z-average, meaning that Z-average values are decreasing while% (w/v) 

of PVA in IP is increasing. On the other hand, positive effects are visible for PF127 as the 

surfactant in EP and CS, which implies that NPs were bigger, when PF127 was used or CS 

was added for NPs loaded with OVA, comparing to NPs only loaded with OVA (without 

CS and PF127 in EP). 

 

Figure 11: Coefficients and effects plot for Z-average. 
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We can also see if there are any factor interactions. With interaction plots (Figure 12) the 

predicted values of the response, when one factor varies from its lowest to its highest level, 

are plotted for both levels of each factor and all remaining factors in the design are set on 

their average (50).  

 

We can see from the interaction plot on the left of Fig. 12, that Z-average decreased when 

the% (w/v) of PVA increased and no CS was added. When CS was added, the trend 

remained the same, except with 14% (w/v) PVA, which can be explained by the increased 

viscosity of IP, making the system less stable (as explained before). Regarding the 

interaction plot on the right, it is visible that particle size increases drasticly when PF127 

and CS are combined. As previously stated, Z-average is lower for PVA in EP (with or 

without CS).  

After analysis, adjustments, refining and alterations of model terms, the final model was 

established. Summary of fit provides a summary of the basic model statistics, presented 

visually. For every response there are 4 columns displayed: R2, Q2, model validity and 

reproducibility (as explained in 3.2.4.3 Analysis). The summary of fit plot for Z-average is 

displayed in Figure 13. The R2 column is over 0.9 which indicates a good model fit with 

high significance. The Q2 column being greater than 0.5 implies a good model, thereby 

providing good estimations of future predictions. Model validity with values over 0.25 

Figure 12: Interaction plots for Z-average. Interaction plot on the left represents interaction 
between % (w/v) of PVA in IP with CS. Interaction plot on the right represents interaction between 
surfactant used in EP with CS. Blue line stands for CS being used in preparation of NPs and green 
line means there is no CS in formulations. 
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shows there is no diverse model problems, such as the presence of outliers, an incorrect 

model, or a transformation problem. Where the  reproducibility column is greater than 0.5  

we can conclude that the variation of the replicates compared to the overall variability is 

not significant, hence results for Z-average are repeatable. 

 

The obtained model for Z-average is significant (p < 0.05). Also, the lack of fit test is not 

significant, hence statistically the model has no lack-of-fit (p < 0.05), meaning that 

replicate errors are similar to model errors (Table VII). 

  
Table VII: : The analysis of variance (ANOVA) plot for Z-average, PDI, ZP and E.O. The 
regression is significant when p < 0.05. The lack-of-fit test shows no significance when  
p < 0.05.  

 

 

Testing model predictions is an important step in modelling. A scatter plot of observed vs. 

predicted values is one of the most common alternatives to evaluate model predictions. 

A plot with points lying on a straight line indicates that predictions are similar to the 

experiment values. From the observed vs. predicted plot for Z-average we can confirm a 

good agreement between model predictions and experimental data (Figure 14). 

ANOVA Z-average PDI ZP E.O. 

regression p = 0.000 p = 0.000 p = 0.000 p = 0.017 

lack-of-fit p = 0.132 p = 0.108 p = 0.063 p = 0.087 

Figure 13: Summary of fit for Z-average. 
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4.1.2 Size distribution 
 

Size distribution is an equaly important aspect of nanoparticulate systems. It also has an 

influence on physicochemical properties, degradation of NPs in vivo, NPs intracellular 

uptake, toxicity and efficacy. Size distribution in this study is expressed with PDI, which 

was measured using dynamic light scattering (photon correlation spectroscopy) with 

Zetasizer Nano S. Each sample was measured in triplicate. 

PDI is the measure of the distribution of particle size in a sample. If NPs are mostly the 

same size, the sample is called uniform (monodisperse). If NPs are very different in size in 

the sample, it is non-uniform (polydisperse). In our study we want samples to be 

monodisperse. 

Results for measured PDI are displayed in Table VI. Comparing plain and OVA loaded 

NPs (both without CS) with PVA in EP we notice that PDI slightly increases, apparently as 

a consequence of the increased size of NPs, which can be explained by the fact that the 

bigger particles are, the wider the size distribution. In similar formulations containing 

PF127 in the EP, we see an opposite trend. PDI lowered but also the size of NPs is smaller, 

so we can explain this with the same logic as above. When CS was added, PDI increased 

for almost all formulations. This can also be explained by the bigger size of these NPs, 

when adding CS. The best result, considering we want OVA and CS included, was 

obtained by F6oc. 

 

Figure 14: Observed vs. predicted plot for Z-average. 
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4.1.2.1 Modelling 
 

In Figure 15, we can see coefficients and effect plots (definitions described previously in 

the section 4.1.1.1 Modelling) for PDI. Significant factors in the PDI model are surfactant in 

EP (PVA or PF127) and CS. Next, in the effects plot we can see that both PF127 and CS 

have a positive effect on PDI, meaning that when these two factors were present in the 

formulation, PDI is expected to increase. 

 

 

For the PDI model there are no observed interactions between model terms. This is due to 

few significant factors. 

Summary of fit for PDI is displayed in Figure 16. R2 is greater than 0.5 which indicates a 

good model fit with high significance. Q2 being greater than 0.5 implies a good model, 

thereby a good estimation of future predictions. Model validity with value over 0.25 shows 

there is no diverse model problems, such as the presence of outliers, an incorrect model, or 

a transformation problem. With reproducibility higher than 0.5 we can conclude that the 

variation of the replicates compared to overall residuals variability is not significant, hence 

results for PDI are repeatable. 

Obtained model for PDI shows a statistically significant regression (p ≤ 0.001). Also the 

lack-of-fit test shows no statistical significance (p = 0.108), meaning that replicate 

differences are similar to model residuals (Table VII). 

 

Figure 15: Coefficients and effects plot for PDI. 
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The scatter plot of observed vs. predicted values for PDI does not show all points close to a 

straight line, which would usually indicate a bad model (Figure 17). We can see points in 

four lines. This happened as a result of not enough variabilty in significant factors. We had 

2 significant factors (surfactant in EP and CS), both at two levels (PVA or PF127 and with 

or without CS), which could lead only to four predictions on the observed vs. predicted 

plot for PDI. 

Figure 16: Summary of fit plot PDI. 

Figure 17: Observed vs. predicted plot for PDI. 
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4.1.3 Zeta potential 
 

The liquid layer surrounding the particle occurs in two parts; an inner area (Stern layer), 

where the ions are strongly bound and an outer (diffuse) area, where they are less stably 

associated. Inside the diffuse layer there is a notional boundary within which the ions and 

particles form a stable entity (57). When a particle moves, ions within the boundary move 

with it. The ions outside  the boundary stay with the bulk dispersant. The potential at this 

boundary (surface of hydrodynamic shear) is named the zeta potential (ZP). The extent of 

the zeta potential gives an implication of the potential stability of the colloidal system. If 

the particles in the suspension have an abundant positive or negative zeta potential then 

they will tend to repulse each other and there will be no tendency for the particles to 

flocculate. However, if the particles have low zeta potential values there will be no force to 

prevent the particles coming together and flocculating (57). 

In this study ZP was measured with Zetasizer Nano Z, assessed by Laser Doppler 

Velocimetry (LDV) in combination with M3 Phase Analysis Light Scattering (M3-PALS). 

Each sample was measured in triplicates.  

Results of measured ZP of formulations are presented in Table VI. The results show 

slightly negative surface charge mostly, but still close to neutrality, with ZP values ranging 

from -5.75 to 0.90 mV. By comparing plain NPs and OVA loaded NPs (without CS) we 

can observe that ZP of NPs with OVA is slightly more negative (for either PVA or PF127 

used in EP), owing to the negative charge of the protein. All formulations with CS have 

more positive ZP than plain controls, due to the positive charge of CS. Also formulations 

with loaded OVA and CS have less negative ZP then formulations with only OVA (for 

either PVA or PF127 used in EP), meaning that more OVA was encapsulated, hence a less 

negative charge of NPs. Except F9o, all formulations showed desired ZP, close to 

neutrality (between -5 mV and 5 mV). 

 

4.1.3.1 Modelling 
 

Determining significant factors for ZP model was different compared to previous models. 

From the coefficents plot (Figure 18) we can observe that between significant factors there 

are also interactions. Interaction between% (w/v) of PVA in IP and surfactant  
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in EP (PVA or PF127) and interaction between% (w/v) of PVA and CS seem to be 

significant.  

 

 

CS alone is the most significant factor for ZP, as can be seen on the effects plot for ZP 

(Figure 18) it has the biggest positive effect. As mentioned above, when CS was added, 

surface charge of NPs became more positive, due to the positive charge of CS. In both 

plots we can detect factors that are not statistically significant (they do not show a large 

distance from y=0 as well as having an uncertainty level that does extend across y=0). 

Sometimes when refining model terms it is not possible to exclude all of the non-

significant terms in order to obtain a better model, that is why they stay included in plots. 

 

As previously seen, there are interactions between model terms in ZP model. We can see 

from the interaction plot on the left (Figure 19) that ZP became more positive when% 

(w/v) of PVA in IP increased (with PVA or PF127 in EP). When CS was added, ZP did not 

change regardless of the changing% (w/v) of PVA or surfactant in the external phase 

(interaction plots in the middle and on the right). For NPs with CS, ZP changed to more 

positive values when increasing the% (w/v) of PVA in IP and to more negative when 

PF127 in EP was used. 

Figure 18: Coefficients and effects plot for ZP. 
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Summary of fit for ZP is displayed in Figure 20. R2 is 0.8 which indicates a good model fit 

with high significance. Q2 is slightly over 0.5, which implies a good model, thereby good 

estimation of future predictions. Model validity with a value over 0.25 shows that there are 

no diverse model problems, such as the presence of outliers, an incorrect model, or a 

transformation problem. With reproducibility greater than 0.5 we can conclude that the 

variation of the replicates compared to the overall variability is not significant, meaning the 

results for ZP are repeatable. 

Obtained model for ZP  has a significant probability for the regression (p ≤ 0.001), 

meaning that model is statistically valid. Also the lack-of-fit test is not significant, hence 

statistically the model has no lack of fit (p = 0.063), meaning that replicate differences are 

similar to model residuals (Table VII). 

Figure 19: Interaction plots for ZP. Interaction plot on the left represents interaction between 
% (w/v) of PVA in IP and surfactant used in EP. Interaction plot in the middle represents 
interaction between % (w/v) of PVA in IP with CS. Interaction plot on the right represents 
interaction between surfactant used in EP with CS. 

Figure 20: Summary of fit for ZP. 
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From the observed vs. predicted plot for ZP we can identify some deviations (low accuracy 

when compared with the Z-average model), still predictions follow the expected trend 

(Figure 21).  

 

4.1.4 Ovalbumin encapsulation efficiency and loading capacity 
    

The ability of PLGA NPs to incorporate model antigen OVA was determined as previously 

described (3.2.3 Ovalbumin loading analysis). The EE represents the percentage of 

entrapped OVA to the initial OVA and LC represent the quantity of the loaded OVA to the 

overall particles, respectively. They are mostly affected by development conditions, 

copolymer compositions, particle size and characterization techniques. Results of the 

calculated EE and LC for all formulations are shown in Table VI. 

The amount of OVA that was not incorporated into NPs was determined by quantifying the 

OVA in particle supernatants. The amount of loaded OVA was calculated by the difference 

betweent the total amount of OVA used during formulation and the mass of OVA that was 

not incorporated into the NPs (Equation 2, Equation 3), this is the amount that was 

detected in supernatants (collected during the washing and centrifugation steps of NPs). 

When PVA was used in the EP we could see that EE was higher with incorporated CS. CS 

polymer is able to protect biomolecules during the particle formulation process and also 

throughout the release in physiologic media. The higher viscosity that is expected for IP 

after CS dissolutiom can decrease the interaction between proteins and the interface of 

droplets of the primary (w/o) emulsion, endorsing the maintenance of their structure and 

Figure 21: Observed vs. predicted plot for ZP. 
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activity, as well as enhancing NPs LC by preventing protein leakage to the external 

aqueous phase. The highest EE and LC is shown for 6% PVA in IP. With PF127 in the EP 

we can notice lower EE and LC values compared to when PVA is in the EP, except for F1o 

and F15o. Highest EE and LC are observed for 6% and 10% PVA in IP. 

Overall, we can conclude that we managed to formulate NPs with high EE and LC values, 

with the best results obtained by F4oc and F6oc. 

HPLC analysis also showed that the excess of surfactant in EP is efficiently removed from 

the surface of NPs during the washing and centrifugation procedures (data not shown). 

 

4.1.4.1 Modelling 
 

When modelling we only used EE results for establishing the model, leaving out the results 

of LC, because of its lack of predictive capacity. To be able to model LC we would 

probably need a more complex modelling structure (a non-linear model) or else more 

information from the process (other factors) to help explain LC's variability. Also, we 

converted percentage values of EE into quantitave values of µg (naming it »amount of 

encapsulated protein« (E.O.) ). 

From the coefficients plot (Figure 22) we can see that only CS is a significant factor. 

However, the type of surfactant used in the EP had an influence on the amount of 

encapsulated OVA (E.O.). CS has a positive effect on E.O., thus increasing E.O. when 

incorporated into NPs (Figure 22) and PF127 has a negative effect. This could imply that 

the surfactant PF127 allowed a leakage of OVA to the external phase. This is probably due 

to its lower ability to decrease the free energy at the specific emulsion droplets interface. 

 

Figure 22: Coefficients and effects plot for E.O. 
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For E.O. model there are no observed interactions between model terms. This is due to a 

lack of significant factors. 

The summary of fit for E.O. shows that the performance in terms of accuracy is lower 

when compared to the previous models (Figure 23). 

 

 

 

The observed lower R2 is confirmed with a Q2 which is only greater than 0.1. Model 

validity being greater than 0.25 and reproducibility being greater than 0.5 are on the other 

hand good characteristics of this model. 

From the ANOVA we can see that the obtained model for E.O.is statistically valid (p = 

0.017). Also there is no lack-of-fit (p < 0.05), meaning that replicate differences are 

comparable to model residuals (Table VII). 

The scatter plot of observed vs. predicted values for E.O. (Figure 24) shows similar 

disturbance as the plot for PDI. We do not see points close to the straight line. This 

happened as a result of not enough variabilty in the significant factors to explain E.O.. We 

had 2 significant factors (surfactant in EP and CS), both at two levels (PVA or PF127 and 

with or without CS), which could lead only to four predictions on the observed vs. 

predicted plot for PDI. 

Figure 23: Summary of fit for E.O. 
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4.2 Models optimisation 
 

The very first result obtained for the models for all responses is represented in Figure 25. 

These models were simply calibrated using the factors terms and interactions without any 

optimisation. They represent thus, the starting point for the model's optimisation 

procedure. 

 

 

 

 

 

 

 

 

 

 

 

Figure 24: Observed vs. predicted plot for E.O. 

Figure 25: Summary of fit for Z-average, PDI, ZP and E.O. before optimisation. 
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Figure 26 shows the same models after the optimisation process. If we compare the initial 

and optimised models (Figures 25 and 26), the difference is very relevant. Especially for Z-

average and E.O. where we can claim that models were improved significantly. 

 

 

 

We can describe the relationship between the response variables and the predictors (or 

factors) mathematically on a matrix format (Figure 27). Values are taken from the scaled 

and centered coefficients list available in Modde. It allows an unfied perspective of all 

developed models. 

Figure 26: Summary of fit for Z-average, PDI, ZP and E.O. after optimisation. 

Figure 27: Models structure and coefficients in matricial format. 
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4.3 Formulation optimisation 

 
To take advantage of the developed models, we used the software optimizer feature to 

estimate a formulation (factors) given to a specific set of values for the responses (desired 

target for the NP). This search procedure is based on the simple algorithm that attempts to 

estimate the most appropriate combination of factors to produce a desired response. Of 

course, it might happen that multiple possibilities exist and it is our duty to select the most 

appropriate solution. Considering the desired quality target for the product, the optimiser 

was run and yielded the following expected values for the factors:  12.1% (w/v) of PVA in 

IP; (ii) 0.075% (wCS/wpolymer) CS; (iii) 0.3% (w/v) of PVA in the EP. 

 

4.4 Design-space estimation 

 
Before estimating the DS for this manufacturing process, it is necessary to set the desired 

range for the response values  (target quality) to obtain the most appropriate combination 

of factors. Our target limits were as mentioned before: Z-average between 50 and 200 nm, 

ZP under 5 mV (positive or negative), PDI lower than 0.2 and for E.O. we decided on a 

minimum of 80 µg. After running the algorithm for the DS estimation, we checked at 

DPMO's of all the responses (considering a DPMO limit of 1000). The value of DPMO for 

PDI was very high (208000), implying that the PDI model is yielding estimations that do 

not provide a product within the expected PDI range. On the other hand, DPMO for all 

other responses was 0, which proves optimal for the definition of the DS and final quality 

of the product. For that reason, we decided that the PDI response will not be included in 

the definition of the DS. A possible reason for DPMO being so high could  be the possible 

non-linear behaviour of  the PDI in relation to the factors, which would explain why we 

could not improve the value of DPMO. The established DS shows the estimated volume in 

the investigated region where we can expect that all specifications are fulfilled at a specific 

risk level (risk assesment). Each response may have a unique model describing the 

connection between the investigated factors and the corresponding response. 

Figure 28 shows the obtained DS established from our study. We were not able to obtain a 

product within specification when PF127 in EP is used. On the other hand, DS for 

formulations with PVA in EP shows an acceptable quality. The green and yellow colors 
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represent the area within the defined limit for DPMO. The optimal values for the factors 

for the desired product as estimated by the optimiser can be seen in the figure's left panel 

(12.1% (w/v) PVA, 0.6 mg/mL CS). 

 

 

4.5 Validation experiments 
 

Model validation is an important aspect of the modelling procedure. We need to validate 

the model's predictions with a few additional experiments, to see if these predictions are 

accurate enough for the production of NPs to rely on the model. Validation relies on testing 

the optimised models for formulations not included in the models' development. There are 

many ways to perform this process. One possibility is to split the available formulations in 

two sets, and use one to develop the models and then use the remaining to test the models. 

Testing is based on comparing the models predictions for these validation samples with the 

experimental data for the responses. In our case, this strategy was not adequate since the 

samples were made according to a DoE meaning that if we leave some samples to test the 

models, it will mean that they are expected to extrapolate. This is because DoE samples are 

estimated to be as independent as possible. Therefore the strategy here was to make a 

couple of new formulations within the boundaries of the factors used in the DoE. The best 

formulation was defined for: (i) 12.1% (w/v) of PVA in the IP; (ii) 0.075% (wCS/wpolymer) 

CS; (iii) 0.3% (w/v) of PVA in the EP. For our validation experiment we chose two points 

Figure 28: Design space for PVA in the EP and for PF127 in the EP. 
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from the established DS (Table VIII). Because of easier and more accurate preparation of 

NPs (specially by weighing) we decided to prepare NPs with 12% (w/v) of PVA in IP and 

0.125% (wCS/wpolymer) CS or without CS. The choice was also based on DPMO. 

Formulation F1 has a low DPMO value while F2 has a DPMO value over the limit. This 

was chosen in order to see if there are large differences between observed and predicted 

results, considering that the DPMO is at its limit for the F2 formulation. 

 

 
Table VIII: Details of formulations for the validation experiments. 

 

 

Results of the validation experiment are shown in Table IX. From the model predicted 

values we can notice that the SD is quite large, giving a higher possibility of observed 

values to be in the predicted range. Observed values showed more narow deviation. All 

observed results had values in the predicted ranges, confirming the models validity. With 

the F2 formulation, selected for DPMO on the boundary, we can see that residual errors are 

mainly higher than with F1, meaning that DPMO is an indicator that should be considered. 

 

     

 

 

 

 

 

 

F IP 
Surfactant 

IP 
Surfactant 

EP DPMO 

F1 12% PVA, H2O, OVA (1.25% (wOVA/wpolymer)) 2% PVA 0.3% PVA 50 

F2 
12% PVA, CS (0.125% (wCS/wpolymer)) , 

OVA (1.25% (wOVA/wpolymer)) 
2% PVA 0.3% PVA 3244 
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Table IX: Results for the validation experiments. 

 

        

From the results of the validation experiments we can conclude that the developed models 

were yielding accurate predictions. It confirms that models could be used to assist the 

development of further formulations.        

 

F1 observed predicted 
prediction 

error 

prediction 

error (%) 

Z-average (nm) 175 ± 2 170.7 ±  34 4.3 2.5 

PDI 0.08 ± 0.014 0.154 ±  0.072 -0.074 48 

ZP (mV) -2.29 ± 0.77 -2.05 ±  0.98 -0.24 11.7 

E.O. (µg) 96.06 99.93 ±  3.81 -3.87 3.8 

F2  

Z-average (nm) 190 ± 4 211.66 ± 24.16 -21.66 10.1 

PDI 0.134 ± 0.013 0.211 ±  0.056 -0.077 36.5 

ZP (mV) -0.41 ± 1.62 -1.39 ±  0.82 0.98 70.5 

E.O. (µg) 99.27 102.91±  3.11 -3.64 3.5 
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5 CONCLUSIONS 

 

In this thesis, PLGA NPs incorporating model antigen OVA were investigated with the 

ultimate goal of developing mathematical models for relevant attributes. Different 

excipients have been tested in various proportions. Variations were made in the amount of 

incorporated OVA, CS and  PVA in IP. PVA and PF127 were also tested as EP surfactants. 

Different concentrations of PVA in IP were used to change the viscosity of IP, 2% (w/v) 

PVA was used as a surfactant in IP to build the w/o emulsion and then the 0.3% (w/v) 

PVA or 0.3% (w/v) PF127 were used as surfactants in EP for the w/o/w emulsion. The 

produced NPs with appropriate physicochemical characteristics are intended for 

subcutaneous or intratumoral administration. We were able to obtain proper NPs acording 

to our target: Z-average between 50 and 200 nm; ZP under 5 mV (positive or negative); 

PDI lower than 0.2. All these formulations have 0.3% (w/v) PVA as a surfactant in EP. If 

we take in consideration that NPs should contain OVA as the model antigen and CS for 

higher EE, only F6oc formulation is applicable (Z-average: 201 ± 3 nm; PDI: 0.137 ± 

0.013; ZP: -1.59 ± 0.71 mV; EE: 85.95%; LC: 10.74 µg/mg). With HPLC analysis we 

confirmed that the excess PVA as surfactant in EP was efficiently removed from the 

surface of NPs during the washing and centrifugation procedure. 

Transforming  data into information  was achieved with a linear modelling approach using 

the software Modde. It enabled us to estimate the importance and influence of terms of 

particles properties. Z-average was most affected by% (w/v) of PVA in IP, CS and PF127 

as surfactant in EP. PDI was most affected by CS and PF127 as surfactant in EP. ZP and 

EE were most affected by CS.  

We were able to establish accurate models for responses. It is important to mention that 

models are never 100% right but they give us useful information about what is more 

important considering the system we are modelling. A DS was created, from which 

admissible predictions were made and then confirmed with additional validation 

experiments. We also confirmed that DPMO is an indicator that should be considered. Our 

validation experiments showed that our models could be used to assist the development of 

further formulations.        
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For future work, we should perform more experiments with more variations in factors. We 

could also use the same modelling approach with other similar systems, to analyse 

differences and similarities. It would be recommended to test a non-linear approach to 

develop the model. Particularly, the PDI model should be additionally investigated with a 

non-linear approach to see if the non-linearity was the reason for the very high DPMO 

when trying to create the DS.  
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