ŠPELA OREŠNIK

MAGISTRSKA NALOGA

MAGISTRSKI ŠTUDIJ LABORATORIJSKE BIOMEDICINE

Ljubljana, 2014
UNIVERZA V LJUBLJANI
FAKULTETA ZA FARMACIJO

ŠPELA OREŠNIK

OPTIMIZACIJA MODELA CELJENJA POŠKODBE MONOPLASTNE
KULTURE PRIMARNIH HUMANIH PLJUČNIH FIBROBLASTOV

OPTIMIZATION OF THE WOUND HEALING MODEL FOR PRIMARY
HUMAN LUNG FIBROBLAST MONOLAYER CULTURE

Ljubljana, 2014
Magistrsko nalogo sem opravljala v Laboratoriju za imunologijo revmatizma, KO za revmatologijo, UKC Ljubljana pod mentorstvom doc. dr. Saše Čučnik in somentorstvom doc. dr. Snežne Sodin-Šemrl.

Zahvala

Izjava
VSEBINA

VSEBINA ... 1
POVZETEK ... 4
ABSTRACT ... 5
OKRAJŠAVE ... 6
1 UVOD ... 8
1.1 SISTEMSKA SKLEROZA .. 8
1.1.1 Interstijska pljučna bolezen .. 9
1.2 FIBROBLASTI IN NASTANEK FIBROZE ... 10
1.3 VNETJE ... 11
1.3.1 Serumski amiloid A .. 12
1.4 CELJENJE RAN ... 15
1.4.1 Molekule vključene v celjenje ran ... 15
1.5 KONTROLNE MOLEKULE IN INHIBITORJI .. 17
1.5.1 Epidermalni rastni faktor ... 17
1.5.2 Hidrokortizon .. 17
1.5.3 Citotoksin kolhicin ... 18
1.6 In vitro »SCRATCH« METODA ... 18
1.7 ENCIMSKO IMUNSKA METODA NA TRDNEM NOSILCU ... 19
1.8 VERIŽNA REAKCIJA S POLIMERAZO V REALNEM ČASU .. 19
2 NAMEN, HIPOTEZE IN CILJI ... 21
3 METODE ... 23
3.1 NASAJANJE IN GOJENJE CELIC .. 23
3.2 DELO S CELICAMI .. 24
3.2.1 Preliminarni, pilotni del ... 24
3.2.2 Potrditveni poskusi .. 27
3.3 IL-6 ELISA .. 30
3.4 IZOLACIJA RNA .. 31
 3.4.1 Spektrofotometrično določanje čistosti in izkoristka RNA 31
3.5 REVERZNA TRANSKRIPCIJA .. 32
3.6 KVANTITATIVNA VERIŽNA REAKCIJA S POLIMERAZO V REALNEM ČASU .. 33
3.7 StellARray ... 35
3.8 OBDELAVA MIKROGRAFOV .. 36
4 MATERIALI ... 37
 4.1 Reagenti ... 37
 4.2 BIOLOŠKI MATERIALI .. 39
 4.3 APARATURE IN OSTALI MATERIALI ... 39
5 REZULTATI ... 41
 5.1 VPLIV SAA NA PRIMARNE ČLOVEŠKE PLJUČNE FIBROBLASTE 41
 5.1.1 Vpliv SAA na pljučne fibroblaste po stimulaciji s kolhicinom 42
 5.1.2 Vpliv SAA v kombinaciji z EGF/ hidrokortizonom na pljučne fibroblaste in vpliv SAA na ekspresijo različnih genov 43
 5.2 MODEL CELJENJA RAN V CELIČNI KULTURI PLJUČNIH FIBROBLASTOV ... 46
 5.2.1 Vpliv EGF na poškodovane pljučne fibroblaste 46
 5.2.2 Vpliv SAA na poškodovane pljučne fibroblaste 48
 5.2.3 Vpliv kolhicina na poškodovane pljučne fibroblaste 50
 5.2.4 Vpliv SAA na poškodovane pljučne fibroblaste po stimulaciji s kolhicinom .. 52
 5.3 STELLARRAY – Primerjava nepoškodovanih / poškodovanih pljučnih fibroblastov v prisotnosti ali odsotnosti SAA .. 56
 5.4 VPLIV SAA NA PLJUČNE FIBROBLASTE PRED IN PO POŠKODBI 57
5.4.1 Vpliv SAA na pljučne fibroblaste pred in po poškodbi na izločanje IL-6 na proteinskem nivoju .. 57
5.4.2 Vpliv SAA na pljučne fibroblaste pred in po poškodbi na mRNA nivoju s QPCR .. 60

6 RAZPRAVA .. 62
6.1 Vpliv SAA na pljučne fibroblaste ... 62
6.2 Vpliv kolhicina na pljučne fibroblaste, delovanje kolhicina v kombinaciji s SAA .. 63
6.3 Celični model celjenja ran ... 64
6.3.1 In vitro »scratch« metoda .. 64
6.3.2 Morfološke spremembe pljučnih fibroblastov .. 64
6.3.3 Spremembe na proteinskem nivoju .. 65
6.3.4 Spremembe na mRNA nivoju .. 66
6.4 Razlike med pljučnimi fibroblasti iz zdravih tkiv in pljučnimi fibroblasti iz fibrotičnih tkiv ... 66

7 SKLEPI ... 68
8 LITERATURA ... 69
POVZETEK

Sistemska skleroza (SSc) je kronična avtoimunska bolezen, ki se kaže s fibrozo kože in notranjih organov. Fibroza nastane zaradi trajne aktivacije fibroblastov, ki prekomerno sintetizirajo in izločajo zunajcelični matriks, kar vodi do preoblikovanja strukture tkiv. Vzrok nastanka fibroze so lahko tudi okvare pri celjenju ran. Med najbolj resnimi kliničnimi parametri so fibrotične spremembe pljuč, ki veljajo za enega glavnih vzrokov smrti pri bolnikih s SSc. Serumski amiloid A (SAA) je protein akutne faze in pokazatelj vnetja pri ljudem. Povišan je pri bolnikih s SSc in povišane koncentracije SAA sovpadajo s poslabšanjem pljučnih funkcij.

Namen našega dela je postavitev in optimizacija celičnega modela celjenja ran na primarnih humanih pljučnih fibroblastih. Zanimalo nas je, ali SAA stimulira pljučne fibroblaste, ali poviša ekspresijo vnetnega citokina interlevkina-6 (IL-6) in njegovo sodelovanje pri celjenju poškodb pljučnih fibroblastov v prisotnosti citotoksina kolhicina. Celični model celjenja ran smo preučevali na morfološkem nivoju z analizo fotografiranih celic pred in po inkubaciji, kjer smo tudi določali število in viabilnost celic. Določili smo nivoje izločenega IL-6 na proteinskem nivoju z encimsko imunsko metodo na trdem nosilcu ter ekspresijo izbranih genov, med njimi IL-6 in IL-8, z verižno reakcijo s polimerazo v realnem času na mRNA nivoju.

SAA je stimuliral pljučne fibroblaste in v odvisnosti od odmerka povišal tako ekspresijo kakor izločanje IL-6. Povišal je tudi ekspresijo vnetnega kemokina IL-8 in matriks metaloproteinaze-12. Na delovanje SAA je močno vplivalo mikrookolje, saj je le-ta pokazal izrazito sinergistični učinek pri izločanju IL-6 v kombinaciji SAA z epidermalnim rastnim faktorjem ali interlevkinom-1β. Kolhicin je močno inhibiral rast celic in prekinil zaraščanje celic v prostor poškodbe. Rezultati nakazujejo, da bi lahko SAA do določene mere obnovil s kolhicinom inhibirane in okvarjene pljučne fibroblaste. Do sedaj se je domnevalo, da je SAA možen kazalec fibroze pri intersticijski pljučni bolezni, vendar naši rezultati kažejo, da bi SAA kot stimulator izločanja IL-6, lahko tudi doprinesel k razvoju fibroze.
ABSTRACT

Systemic sclerosis (SSc) is a chronic autoimmune disease characterized by fibrosis of the skin and internal organs. Fibrosis is caused by persistent activation of fibroblasts, which leads to excessive synthesis and secretion of extracellular matrix and tissue restructuring. One of the causes of fibrosis development may also be defects in wound healing. Among the most serious clinical parameters in patients with SSc are lung fibrotic changes which represent one of the leading causes of mortality. Serum amyloid A (SAA) is an acute phase protein and a marker of inflammation in humans. SAA is elevated in patients with SSc and its increased levels coincide with pulmonary function deterioration.

The purpose of our work is to establish and optimize a wound healing model in primary human lung fibroblasts. We were interested in knowing whether SAA stimulates lung fibroblasts and promotes the expression of the inflammatory cytokine interleukin-6 (IL-6). We also wondered whether SAA participated in healing of damaged lung fibroblasts in the presence of the cytotoxin colchicine. The cellular model of wound healing was studied at the morphological level with analysis of photographed cells before and after incubation and determination of cell number and viability. We determined the levels of released IL-6 at the protein level with the enzyme-linked immunosorbent assay and expression of selected genes, such as IL-6 and IL-8 with real time polymerase chain reaction at the mRNA level.

SAA stimulated lung fibroblasts and elevated both the expression and secretion of IL-6 in a dose-dependent manner. It also elevated the expression of the inflammatory chemokine IL-8, as well as matrix metalloproteinase-12. SAA was strongly influenced by the microenvironment, since it showed a distinct synergistic effect on IL-6 secretion in combination with epidermal growth factor or interleukin-1β. Colchicine severely inhibited cell growth and prevented cells growing into the damaged area. Our results indicate that SAA could restore colchicine-damaged lung fibroblasts to some extent. Until now, it was assumed that SAA could be a possible marker of fibrosis in interstitial lung disease, however our results show that SAA can also act as an inducer of IL-6 secretion, which could contribute to the development of fibrosis.
OKRAJŠAVE

B kontrola ozadja, celice brez dodanih učinkovin, (angl. background control)
cDNA komplementarna veriga mRNA, (angl. complementary DNA)
CRP C-reaktivni protein, (angl. C - reactive protein)
CTGF rastni faktor vezivnega tkiva, (angl. connective tissue growth factor)
DMSO dimetil žveplov oksid, (angl. dimethylsulfoxide)
DNA deoksiribonukleinska kislina, (angl. deoxyribonucleic acid)
EGF epidermlni rastni faktor, (angl. epidermal growth factor)
EGFR receptor za epidermlni rastni faktor, (angl. epidermal growth factor receptor)
ELISA enzimsko imunska metoda na trdnem nosilcu, (angl. enzyme-linked immunosorbent assay)
EtOH etanol, (angl. ethanol)
FBM bazalni medij za fibroblaste, (angl. fibroblast basal medium)
FBS goveji fetalni serum, (angl. fetal bovine serum)
HC hidrokortizon, (angl. hydrocortisone)
HDL visokogostotni lipoprotein, (angl. high-density lipoprotein)
IPF idiopatska pljučna fibroza, (angl. idiopathic pulmonary fibrosis)
IL interlevkin, (angl. interleukin)
KOL kolhicin, (angl. colchicine)
LPA lizofosfatidna kislina, (angl. lysosphatidic acid)
MCP-1 monocitni kemoattractantni protein-1, (angl. monocyte chemoattractant protein-1)
MMP matriks metalloproteinaze, (angl. matrix metalloproteinases)
MMP-12 matriks metalloproteinaza 12/ makrofagna metaloelastaza, (angl. matrix metalloproteinase-12)
mRNA informacijska ribonukleinska kislina, (angl. messenger ribonucleic acid)
NHLF normalni humani pljučni fibroblasti, (angl. normal human lung fibroblasts)
NTC PCR kontrola brez cDNA, (angl. »no template control«)
PAI-1 inhibitor plazminogenskega aktivatorja-1, (angl. plasminogen activator inhibitor-1)
PBS s fosfatom pufrana fiziološka raztopina, (angl. phosphate-buffered saline)
<table>
<thead>
<tr>
<th>Acronym</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCR</td>
<td>verižna reakcija s polimerazo, (angl. polymerase chain reaction)</td>
</tr>
<tr>
<td>PDGF</td>
<td>trombocitni rastni faktor, (angl. platelet-derived growth factor)</td>
</tr>
<tr>
<td>PF</td>
<td>pljučni fibroblasti, (angl. pulmonary fibroblasts)</td>
</tr>
<tr>
<td>RNA</td>
<td>ribonukleinska kislina, (angl. ribonucleic acid)</td>
</tr>
<tr>
<td>RPM</td>
<td>število obratov na minuto, (angl. revolutions/rotations per minute)</td>
</tr>
<tr>
<td>SAA</td>
<td>serumski amiloid A, (angl. serum amyloid A)</td>
</tr>
<tr>
<td>SSc</td>
<td>sistemska skleroza, (angl. systemic sclerosis)</td>
</tr>
<tr>
<td>TGF-β</td>
<td>transformirajoči rastni faktor beta, (angl. transforming growth factor-β)</td>
</tr>
<tr>
<td>TNF-α</td>
<td>dejavnik tumorske nekroze alfa, (angl. tumor necrosis factor-α)</td>
</tr>
<tr>
<td>QPCR</td>
<td>verižna reakcija s polimerazo v realnem času, (angl. quantitative PCR)</td>
</tr>
</tbody>
</table>
1 UVOD

1.1 SISTEMSKA SKLEROZA

Sistemska skleroza (SSc) je kronična sistemska avtoimunska bolezen veziva, za katero so značilni aktivacija imunskega sistema, fibroza tkiv in difuzna sklerotična prizadetost predvsem drobnega arterijskega žilja. Je redka bolezen, saj je letna pojavnost vseh kliničnih oblik bolezni v Sloveniji ocenjena na 26 primerov na milijon prebivalcev, starejših od 18 let. Najpogosteje se pojavlja med 30. in 60. letom starosti, ženske zbolevajo štirikrat pogosteje kot moški (1). Pojavlja se sporadično, opisani so tudi primeri družinskega pojavljanja, ki kažejo na možen vpliv dednosti pri nastanku bolezni. Bolezen etiološko ni opredeljena. Za potencialne vzroke nastanka bolezni veljajo okužba s humanim citomegalovirusom, skupaj z izpostavljenostjo določenim zunanjim dejavnikom kot so vinilklorid, epoksismole, silikon, kirurški vsadki, zaviralci apetita in drugi (1). Patogeneza bolezni je kombinacija poškodbe žilnega endotelija, vnetja, aktivacije imunskega sistema in progresivne fibroze. Začne se s poškodbo drobnega žilja, ki povzroči aktivacijo endotelnih celic, adhezijo levkocitov, kar vodi do vnetja in avtoimunskega odziva. Med vnetjem aktivirani limfociti in druge mononuklearne celice izločajo številne citokine in kemokine, ki povzročajo trajno aktivacijo fibroblastov. Aktivirani fibroblasti so odgovorni za sintezo in prekomerno nalaganje zunajceličnega matriksa ter preoblikovanje strukture matriksa, kar vodi v fibrozo. Glede na hitrost napredovanja bolezenskih znakov in glede na obseg ter stopnjo prizadetosti kože in notranjih organov ločimo 4 klinične oblike: presklerodermo, difuzno kožno obliko, omejeno kožno obliko in obliko brez prizadetosti kože (1). Najpogosteje se pojavlja omejena kožna oblika in difuzna kožna oblika bolezni. Omejena oblika se kaže z žilnimi manifestacijami, fibroza kože in organov pa je omejena in počasi napreduječa (2). Difuzna oblika SSc, za katero zboli manj kot 40% vseh bolnikov s SSc, se kaže s hitrim napredovanjem kožnih sprememb, ki dosežejo vrh v prvi treh letih bolezni in z zgodnjo prizadetostjo notranjih organov (1). Klinični znaki so Raynaudov fenomen (epizodične spremembe vezane na temperaturne razlike, odrevenelost, mravljenje ter žgoča bolečina distalnih delov okončin), otekline rok, podlahti, stopal, goleni in obraza, jutranja okorelost, bolečine v sklepih in mišicah, težave s požiranjem, splošna utrujenost in hujšanje, kožne spremembe. Najpogosteje prizadeti notranji organi so prebavila, pogosto pa so prizadeta tudi pljuča, srce in ledvica (1). Krivec za prizadetost tako kože kot notranjih organov je fibroza, najbolj karakteristični patološki
znak SSc, posebno pri difuzni obliki bolezni. Koža s podkožjem postaja trda in zadebeljena, s predeli hiper- in hipopigmentacij. Pri napredovalih oblikah pride do atrofičnega stadija kože, ki se kaže z zmanjšano zmožnostjo gibljivosti okončin, razgradnjo kostnine v prstnih členkih, ptičjem videzom obraza in zmanjšano ustno odprtino (1).

Postopna zamenjava tkivne strukture z zunajceličnim matriksem, bogatim s kolagenom, se kaže v oslabljeni funkciji prizadetih tkiv in organov. Fibroza je najbolj izrazita v koži, pljučih, srcu, prebavilih, kitah, ligamentih in endokrinih žlezah in je največji krivec za obolelost ter smrtnost pri SSc (2).

Diagnostika SSc je zahtevna zaradi heterogene klinične slike bolezni. Potrebno je upoštevati tako klinične znake bolezni kot tudi laboratorijske parametre. Glavno merilo za postavitev diagnoze je klinično vidno sklerodermično spremenjena koža dlani in narti. Pomožna merila so trofične bražgotinice na blazinicah prstov rok, pljučna fibroza in sklerodaktilia, ki je oblika sklerodermije na prstih rok in nog, ki se kaže z napetostjo kože, togoščo prstov, atrofijo mehkega tkiva in osteoporozo kosti v prstnih členkih (1). Določa se tudi hitrost sedimentacije eritrocitov, ki je vnetni laboratorijski parameter vključen v izračun indeksa dejavnost bolezni. 90% bolnikov ima povišan titer protiteles proti antigenom jedra. 20-30% bolnikov z difuzno obliko ima protitelesa proti antigenu Scl-70, 50-90% bolnikov z omejeno kožno obliko bolezni pa ima anticentromerna protitelesa (1).

Najvišjo smrtnost pri bolnikih povzroča intersticijska pljučna bolezen, ki se kaže s pljučno fibrozo. To vodi v intenziven razvoj raziskav, ki so usmerjene v poglobljeno razumevanje vlog posameznih tipov celic in njihovih topnih mediatorjev ter terapij, ki bi fibrozo prekinile ali vsaj upočasnile.

1.1.1 Intersticijska pljučna bolezen

Intersticijska pljučna bolezen pri bolnikih s SSc predstavlja pester spekter kliničnih znakov, ki lahko povzročijo preoblikovanje tkiva pljuč, strukturne poškodbe pljučnega parenhima in oslabitev dihalnih funkcij (3). V pulmonarni fiziologiji velja za restriktivno (omejujočo) pljučno bolezen, ki povzroča zmanjšano podajnost pljuč (sprememba volumna pljuč na enoto spremembe transpulmonalnega tlaka) in vitalno kapaciteto pljuč. Vzrok za njen nastanek še ni v celoti poznan. Patogeneza intersticijske pljučne bolezni je zapletena in vključuje porušenje homeostaze obtočilnega in imunskega sistema (3). To porušenje se kaže v poškodbah drobnega žilja, ki vodijo do aktivacije fibroblastov, prekomernega nalaganja zunajceličnega matriksa in fibroze pljuč ter povečanja vnetnega odziva. Fibroza
1.2 FIBROBLASTI IN NASTANEK FIBROZE

Morfološko so fibroblasti podolgovate, vretenaste ali zvezdaste celice s številnimi citoplazemskimi izrastki, imajo ovalno jedro in več jedrc. Ključna vloga fibroblastov je sinteza za organ in za tkivo specifičnih komponent zunajceličnega matriksa kot so kolageni, elastične niti, različni strukturni glikoproteini, glikozaminoglikani in proteoglikani. Poleg tega vzdržujejo natančno ravnotežje med sintezo in razgradnjo zunajceličnega matriksa, ki je potrebno pri različnih fizioloških procesih kot so razvoj in diferenciacija (5). Fibroblasti imajo ključno vlogo tako pri obnavljanju normalnega tkiva, kot tudi pri nastanku fibroze. Topni mediatorji, kot so interleukin 1 (IL-1), transformirajoč rastni faktor beta (TGF-β) in rastni faktor vezivnega tkiva (CTGF), ki jih ob poškodbi drobnega žilja v lokalnem mikrookolju sproščajo trombociti, endotelne, epitelne ter vnetne celice, aktivirajo fibroblasti. Ti nato izločajo komponente zunajceličnega matriksa, ki vzdržujejo, skrčijo, organizirajo in preoblikujejo vezivno tkivo.
Največji del, izmed komponent zunajceličnega matriksa, so kolageni, družina proteinov, ki je sestavljena iz preko dva ducata strukturnih proteinov. Ob aktivaciji se fibroblasti transdiferencirajo v miofibroblaste. Miofibroblasti so specializirani fibroblasti, ki se lahko krčijo in imajo podobne lastnosti kot celice gladkih mišic. Prav tako sintetizirajo komponente zunajceličnega matriksa in so glavni vir TGF-β med nastankom fibroze. Pri procesu celjenja poškodovanega tkiva, so miofibroblasti le prehodne celice, ki se nato odstranijo z apoptozo. V fibozirajočem tkivu so miofibroblasti prisotni trajno in v večjem številu, kar vodi v prekomerno nalaganje komponent zunajceličnega matriksa in s tem v kronično rano tkiva (2).

Fibroblasti izločajo citokine in rastne faktorje, med njimi so tudi taki, ki ob povečanju sproščanja spodbujajo nastanek fibroze kot so TGF-β, CTGF, trombocitni rastni faktor (PDGF), mononitni kemoattractor protein 1 (MCP1) ter lizofosfatidna kisilna (LPA). Proizvajajo tudi matriks metalloproteinaze (MMP) in njihove inhibitorje, ki regulirajo proteolitsko razgradnjo proteinov zunajceličnega matriksa, kot je kolagen in s tem kontrolirajo strukturo in preoblikovanje matriksa.

Pljuča so dinamičen organ in fibroblasti s proizvajanjem zunajceličnega matriksa zagotavljajo ogrodje za celice in mediatorje, da so se sposobne odzvati na hitre spremembe v strižnih silah (6). V pljučih so fibroblasti najštevilčnejši v subepitelni plasti prevodnih dihalnih poti in v intersticiju pljučnega parenhima, kar jih postavlja na mesto zraven epitelnih in endotelijskih celic (6), kjer se ob sproščanju topnih mediatorjev lahko hitro aktivirajo.

Normalni, primarni humani pljučni fibroblasti so celična kultura zdravih pljučnih fibroblastov izoliranih iz odraslega pljučnega tkiva. Uporabljajo se predvsem za raziskovanje stimulacije in odzivov pri vnetju in fibroz pljučnega tkiva (7).

1.3 VNETJE
Vnetna reakcija je odgovor organizma na okužbe, poškodbe tkiva ali vnos škodljivih snovi. Ne glede na vzrok, se vnetje in vivo začne s spremembami drobnega žilja, ki jim sledi migracija fagocitov v smeri koncentracijskega gradienta, odstranjevanje škodljivih snovi in nazadnje obnova prizadetega tkiva. Kaže se kot otekлина, rdečina, bolečina, lokalno zvišana telesna temperatura in omejena funkcija prizadetega predela ali organa (8). Vnetje lahko poteka akutno ali kronično.
Lokalno akutno vnetje lahko spremlja sistemski odziv, imenovan reakcija akutne faze (8). Gre za temeljni zaščitni mehanizem prirojene imunosti, ki se kaže s povišano telesno temperaturo, povečanim nastajanjem levkocitov in s spremenjenim profilom akutno faznih proteinov, kot so serumski amiloid A (SAA), C reaktivni protein (CRP), fibrinogen, haptoglobin in drugi. Povišana telesna temperatura preprečuje razmnoževanje patogenov in okrepi imunski odziv nanje. Trajanje in jakost lokalnega akutnega vnetja morata biti skrbno nadzorovana, saj nakopičeni fagociti v tkivu sproščajo litične encime, ki okvarijo tudi sosednje zdrave celice. Ob nadzorovanem akutnem vnetju se omeji okvara tkiva in omogoči obnova prizadetega tkiva, ki je potrebna, da se rana zaceli. Po koncu akutne vnetne reakcije je potrebna odstranitev mrtvih celic in levkocitov, ki so sodelovali v akutni fazi vnetja. Če je ta faza okvarjena, lahko pride do kroničnega vnetja, vnetni infiltrat vztraja, pride do tkivne hiperplazije in navsezadnje do uničenja in brazgotinjenja tkiva (9). Za kronično vnetje je značilno nakopičenje in aktivacija makrofagov, ki veliko prispevajo k okvari tkiva, saj te celice sproščajo hidrolitične encime in reaktivne kisikove ter dušikove presnovke, kar povzroči okvaro okoljskega tkiva (8). Makrofagi s sproščanjem citokinov tudi pospešujejo razmnoževanje in aktivacijo fibroblastov in posledično se na kraju kroničnega vnetja razvije fibroza. Nedolgo nazaj so fibroblasti veljali kot pasivni igralci v imunskem odzivu. Mnoge raziskave kažejo, da aktivirani fibroblasti skupaj s tkivnimi makrofagi določajo strukturo tkivnega mikrookolja in uravnavejo odzive imunskih celic. Tkivno mikrookolje določajo s produkcijo kemokinov in zunajceličnega matriksa ter igrajo pomembno vlogo pri prehodu iz akutnega vnetja v pridobljeno imunost. Neprimarna proizvodnja imunoregulatornih molekul sproščenih iz fibroblastov ima učinke na celice pridobljenega imunskega sistema, ovira zaključek akutnega vnetja in lahko posledično vodi v kronično vnetje (9).

1.3.1 Serumski amiloid A

SAA je poleg CRP glavni akutno fazni protein in pokazatelj vnetja pri ljudeh. Akutno fazni odziv se odraža s spremenjenim profilom akutno faznih proteinov, ki postanejo nekontrolirano izraženi pri kroničnih boleznih, kot je SSc. SAA je eden glavnih pozitivnih reaktantov akutne faze vnetja. Njegova serumsk na koncentracija se lahko med vnetjem, infekcijo ali poškodbo tkiva poveča do 1000x in preseže vrednost 1 mg/ml v krvnem obtoku. Družina genov SAA se pri človeku nahaja na kromosomu 11 in jo sestavljajo 3 funkcionalni geni SAA (SAA1, 2 in 4) ter psevdogen SAA3, ki je bil najden prepisan do
sedaj le v mlečnih žlezah. Primarno mesto sinteze obeh SAA so hepatociti, vendar pa je bila sinteza pri človeku odkrita tudi v monocitih/makrofagih, v celicah aterosklerotičnih lezij (makrofagi, endotelijske in gladke mišične celice), v adipocitih in mnogih drugih celicah (10). Glavni citokini, ki sprožijo prepisovanje genov SAA so IL-1, IL-6 in dejavnik tumorske nekroze alfa (TNF-α).

Informacijska RNA (mRNA) ali proteini SAA, ki so bili najdeni v vseh vretenčarjih, so evolucijsko zelo ohranjeni in to skupaj s pospešenim prepisovanjem genov SAA kot odgovor na potencialno življenjsko nevarna stanja, kaže na kritično zaščitno vlogo proteinov SAA pri akutno faznem odgovoru (10). Funkcije proteinov SAA lahko razdelimo v tri skupine: imunsko delovanje, vpletenost v transport oz. metabolizem lipidov in vnetno delovanje. Proteini SAA sprožijo ekspresijo encimov zunajceličnega matriksa kot so proteinaze, kolegenaze, ki so pomembne za obnovo poškodovanega tkiva. SAA lahko deluje kot kemotaktični agens za imunske celice kot so monociti, polimorfonuklearni levkociti in limfociti T, saj se veže na iste receptorje kot kemokini in kemoatraktanti kot je N-formil-metionin-leucin-fenilalanin (N-formil-Met-Leu-Phe). S tem lahko ojača lokalno vnetje, saj lokalna produkcija SAA povzroči kopčenje teh celic na mestu vnetja. Ko se SAA sprosti v krvni obtok, nadomesti apolipoprotein A-I v visokogostotnem lipoproteinu (HDL). S to vezavo SAA spremeni metabolizem HDL. Pospešuje regeneracijo tkiva na mestu vnetja tako, da poveča transport lipidov, predvsem holesterola perifernim celicam, ki imajo povečane potrebe po holesterolu. Nasprotno lahko sodeluje pri odtoku holesterola iz celic in pospeši odstranjev velikih količin holesterola sproščenega na mestu tkivne poškodbe med vnetjem. Protivnetno vpliva SAA na interakcije med limfociti in makrofagi ter na funkcijo limfocitov T-pomagalk in tako zavira imunski odziv na antigene. SAA ima mnoge obrambne funkcije in hitro povišanje koncentracije med akutno fazo vnetja je za organizem ugodno. Če vnetje vztraja, kot na primer pri kroničnih vnetnih boleznih kot so revmatoidni artritis, metabolni sindrom ali ateroskleroza, podaljšano zvišanje koncentracije SAA v pliva dege kritično za tkiva (11). Kronično zvišane koncentracije SAA so tudi pogoj za razvoj sekundarne AA amiloidože, ki je progresivna in smrtna bolezen pri kateri se protein amiloid A (proteolitični fragment SAA) odlaga v glavnih telesnih organih v obliki netopnih leh. Nastale netopne lehe lahko prispevajo tudi k fiziološkim procesom pri nastanku ateroskleroze (12). Zato obstajajo tako pozitivni kot negativni mehanizmi kontrole ekspresije SAA, ki omogočajo povišanje ekspresije SAA, vse dokler SAA ne izvrši svoje zaščitne funkcije in nato zavrtje ekspresije, da se lahko koncentracija SAA
zniža nazaj na bazalni nivo (12). Ti mehanizmi vključujejo transkripcijske faktorje, ki vplivajo na potek transkripcije in post-transkripcijsko regulacijo mRNA SAA. Ni še popolnoma jasno, zakaj ti kontrolni mehanizmi včasih ne zadostujejo ali pa odpovejo in tako lahko pride do zgoraj naštetih bolezni (12). Lakota in sodelavci (13) so pokazali, da je SAA lociran v neposredni bližini mikrotubulov v primarnih humanih koronarno arterijskih endotelijskih celicah, ki niso bile izpostavljene nobenim učinkovinam. Znotrajcelično so dokazali prisotnost SAA tako z imunofluorescenčno mikroskopijo, kakor tudi z metodo »In Situ Proximity Ligation Assay«, ki je pokazala tesno kolokalizacijo obarvanih proteinov. Poročila o SAA pri SSc so redka. Hitrost sedimentacije eritrocitov, kot vnetni parameter, velja za napovedni dejavnik umrljivosti pri SSc in je vključen v izračunu indeksa dejavnosti bolezni. Raziskave kažejo korelacijo vnetnega pokazatelja CRP z aktivnostjo bolezni, pljučno funkcijo in preživetjem bolnikov s SSc. SAA je v primerjavi s CRP občutljivejši biološki označevalc, posebno pomemben v območju majhnih vnetnih zvišanj, kaže pa tudi večji obseg odziva (11). Lakota in sodelavci (11) so raziskovali serološke ravni SAA pri 129 pacientih s SSc in jih primerjali s kliničnimi znaki in laboratorijskimi parametri. Poročajo o značilnem povišanju ravni SAA pri bolnikih s SSc z najvišjo mediano ravni pri zgodnji fazi difuzne oblike bolezni. Še pomembnejšo ugotovitev predstavljajo številne zmerne korelacije ravni SAA z označevalci pljučne prizadetosti (intersticijska pljučna bolezen, pljučna hipertenzija). Glavna ugotovitev raziskave je, da raven SAA značilno sovпадa s funkcijskimi testi pljuč (forsirana vitalna kapaciteta, difuzijska kapaciteta ogljikovega monoksida) in ravne SAA je spremenjena pri pacientih z različnimi vzorci visoko ločljive računalniške tomografije pljuč. Korelacija SAA s povišanim povprečjem pljučne arterijske hipertenzije (merjene s srčno katetrizacijo) je bila statistično značilna pri bolnikih z povprečno SSa ali bolnikih, ki so bili pozitivni na Scl-70. Te ugotovitve kažejo, da je SAA občutljiv biološki označevalc obeh patoloških procesov v pljučih pri bolnikih s SSc, možen kazalec fibroze pri intersticijski pljučni bolezni in poškodbe krvnih žil pri pljučni hipertenziji (11). Če povežemo ugotovitve, je SAA povišan pri bolnikih s SSc in povišane vrednosti SAA sovpadajo s poslabšanjem pljučnih funkcij (12,14). Zaenkrat še ne poznamo vpliva SAA na pljučne fibroblaste in je še nepojasnjeno ali lahko SAA stimulira pljučne fibroblaste ter kako vpliva na izražanje vnetnih citokinov, kemokinov ter razgradnih encimov. Ker so fibroblasti ključne celice pri nastanku pljučne fibroze in so vključeni v nastanek kroničnega vnetja, je pomembno raziskati vpliv SAA na pljučne fibroblaste.
1.4 CELJENJE Ran

Celjenje ran v pljučih je prav tako homeostazni mehanizem, ki omogoča celjenje in ohranjanje integritete pljuč. V zdravih pljučih se po celjenju vzpostavi normalna arhitektura tkiva, fibroza pa se lahko razvije pri hudih ranah, ko tkivna poškodba vztraja in ko so okvarjeni mehanizmi celjenja ran. Fibroza se kaže s prekomernim nalaganjem komponent zunajceličnega matriksa, ki se nalagajo na obstoječe celice in matriks tkiva ter s tem močno vplivajo na celične funkcije. Povečano nalaganje matriksa vodi k zmanjšani zmožnosti izmenjave plinov in komponente zunajceličnega matriksa lahko dodatno poslabšajo vnetje in prispevajo k napredovanju bolezni (6).

1.4.1 Molekule vključene v celjenje ran

Ker je celjenje ran sestavljeno iz faz hemostaze, vnetja, proliferacije in preoblikovanja, lahko v celicah med celjenjem pričakujemo povečano ekspresijo adhezijskih molekul, vnetnih citokinov (kot je IL-6) in kemokinov (kot je IL-8), akutno faznih proteinov, razgradnih encimov (inhibitor plazminogenskega aktivatorja 1 (PAI-1)), komponent zunajceličnega matriksa (kolagen) in molekul vključenih v celično preoblikovanje (MMP-12). Zaenkrat še ni podatkov v literaturi o vplivu SAA na izražanje teh molekul v pljučnih fibroblastih.
IL-6 je pleiotropni vnetni citokin, ki ima pomembno vlogo pri regulaciji imunskega odziva, vnetju in hematopoizi. Izločajo ga lahko mononuklearni fagociti, fibroblasti, celice žilnega endotelija in drugi. Ima mnogo različnih vlog. Pospešuje razmnoževanje in zorenje limfocitov B in s tem okrepi izločanje imunoglobulinov. Je poglavitni mediator reakcije akutne faze in deluje neposredno na hepatocite, da sintetizirajo SAA, CRP in druge proteine akutne faze ter komponente komplementa (16). Znano je, da SAA spodbuja produkcijo in izločanje IL-6 pri sinovijalnih celicah pri revmatoidnem artritisu (17) in pri zdravih dermalnih fibroblastih (18), vendar še ni znano kako SAA vpliva na izločanje IL-6 v pljučnih fibroblastih.

IL-8 je vnetni kemokin, ki pospešuje migracijo nevtrofilcev na mesto vnetja. Izločajo ga aktivirani mononuklearni limfociti, megakariociti in fibroblasti. V študiji so He Rong in sodelavci pokazali, da SAA spodbuja hitro in močno izločanje IL-8 v nevtrofilnih celicah (19). Ravnno tako še ni znano ali SAA, podobno kot v nevtrofilcih, spodbuja tudi izločanje IL-8 v pljučnih fibroblastih.

Gen COL1A2 kodira kolagen tipa I, ki ga najdemo v večini vezivnih tkiv. Je tudi glavna komponenta zunajceličnega matriksa, ki lahko ob prekomernem nalaganju v tkivih vodi do fibroze. Izločajo ga aktivirani fibroblasti, tudi pljučni fibroblasti.
Fibroblasti proizvajajo tudi matriks metaloproteinaze (MMP) in njihove inhibitorje. MMP regulirajo proteolitično razgradnjo proteinov zunajceličnega matriksa kot je kolagen in s tem kontrolirajo strukturo in preoblikovanje matriksa. Matriks metaloproteinaza-12 ali drugače makrofagna metaloelastaza-12 je encim, ki je izražen v alveolarnih makrofagih, epitelnih celicah in celicah gladkih mišic v bronhijih pljuč. Ekspresija MMP-12 je pozitivno regulirana s komponentami matriksa (hialuronska kislina), citokini in rastnimi faktorji, kot so TGF-β, interferon gama (INF-γ) in epidermalni rastni faktor (EGF). In vitro je bila najdena široka paleta potencialnih substratov za MMP-12 kot so kolagen IV, fibronektin in drugi. In vivo ni bil opisan še noben substrat (22).

Vpliva SAA na ekspresijo PAI-1, COL1A2 ali MMP-12 v pljučnih fibroblastih še ne poznamo.

1.5 KONTROLNE MOLEKULE IN INHIBITORJI

1.5.1 Epidermalni rastni faktor

EGF je rastni faktor, ki stimulira proliferacijo in diferenciacijo celic. Dokazano je bilo, da stimulira rast epitelnih celic in v kulturi. Kot mitogen, ki sproži mitožo in transformacijo celic, deluje na humane fibroblaste in vitro, spodbuja proliferacijo fibroblastov, stimulira produkcijo kolagena ter celjenje ran (23). Z visoko afiniteto se veže na receptor epidermalnega rastnega faktora (EGFR) na celični površini in stimulira intrinzični protein tirozin kinazo. Ta sproži signalno transdukcijo, ki povzroči zvišanje znotrajceličnega kalcija, pospešeno glikolizo, sintezo proteinov in pospešeno ekspresijo genov, kar vodi v sintezo DNA in celično proliferacijo. EGFR se nahaja tudi na površini fibroblastov.

1.5.2 Hidrokortizon

Drugo ime za hidrokortizon je kortizol. Je glukokortikoid, ki ga sprošča skorja nadledvične železe in ima mnoge učinke kot so spodbujanje nastajanja ogljikovih hidratov iz beljakovin, zvišuje raven sladkorja v krvi, zavira vnetne procese in vpliva na osrednje živčevje. Na celičnem nivoju pa zavira proliferacijo fibroblastov, sintezo DNA in sintezo proteinov kot je kolagen. Harvey in sodelavci (24) so raziskovali učinke steroidnih hormonov na fibroblaste in vitro in ugotovili, da HC pri koncentraciji 10 pg/ml zmanjša proliferacijo fibroblastov za 20-40% in sintezo DNA za 40-85% v primerjavi s kontrolnimi vrednostmi.
Sinteza proteinov je bila ob izpostavitvi celic hidrokortizonu s koncentracijo 50 pg/ml, zmanjšana za 30% v primerjavi s kontrolnimi vrednostmi (24).

1.5.3 Citotoksin kolhicin

Citoskelet daje celicam obliko, ima pomen pri gibanju, mitozi, znotrajceličnem transportu, ekso- in endocitozi in pri komunikaciji med celicami. Ob okvarah citoskeleta so okvarjene tudi njegove funkcije, posledično se celice ne morejo več deliti in propadejo. Kolhicin je alkaloid jesenskega podleska *Colchicum autumnale*. Že leta 1930 so ga opisali kot strup, ki prizadene nastanek delitvenega vretena in inhibira metafazo. Z veliko afiniteto se veže na tubulin in tako zaustavi nastanek mikrotubulov. Z okvarjenih mikrotubulov se posledično okvari nastanek delitvenega vretena in celice se ne morejo več deliti. Ujihara in sodelavci (25) so s pomočjo konfokalnega laserskega mikroskopa preiskovali spremembo morfoloških parametrov citoskeleta fibroblastov, ki so jih tretirali s kolhicinom. Celice so imele močno okvarjene mikrotubule, slično oblika celic pa se ni veliko spremenila (25).

1.6 *IN VITRO* »SCRATCH« METODA

1.7 ENCIMSKO IMUNSKA METODA NA TRDNEM NOSILCU

1.8 VERIŽNA REAKCIJA S POLIMERAZO V REALNEM ČASU

Verižna reakcija s polimerazo v realnem času (QPCR) predstavlja nadgradnjo konvencionalne metode PCR in temelji na sprotnem določanju in vizualizaciji pomnoženega odseka nukleinske kisline na podlagi fluorescence. Največkrat se uporablja za analizo izražanja genov, za določanje kvantitativnih razlik v izražanju genov, za analize informacijske RNA (mRNA). mRNA s pomočjo reverzne transkripcije prepišemo v komplementarno DNA (cDNA), ki se uporablja kot matrika pri QPCR za detekcijo in kvantifikacijo genov.

Pri QPCR lahko pride do napak zaradi manjših razlik v začetni količini in kvaliteti RNA, razlik in učinkovitosti cDNA sinteze in PCR pomnoževanja. Da bi čim bolj zmanjšali njihov vpliv ter vpliv razlik med vzorci na sam potek QPCR, uporabljamo t.i. hišne gene. Ti so pomnoženi skupaj z vzorcem, in služijo kot notranja referenca, na podlagi katerih je mogoče normalizirati vrednosti ostalih cDNA. Največkrat se za hišne gene uporablja gen
za podenoto 18S ribosomalne RNA (rRNA), gliceraldehid 3-fosfat dehidrogenazo (GAPHD) ali β-aktin (28).

Za določanje pomnoženega dela nukleinske kisline se pogosto uporablja TaqMan sonda, ki se specifično veže na tarčno zaporedje. Temelji na 5'→3' eksonukleazni aktivnosti Taq polimeraze, encima, ki v reakciji služi za pomnoževanje odsekov nukleinske kisline. TaqMan je fluorescentna oligonukleotidna sonda, ki ima vezani 2 fluorescentni barvili. Na 5' koncu je vezano reportersko barvilo, na 3' koncu pa dušilec, ki duši oddano fluorescenco reporterskega barvila. Med podaljševanjem verige s Taq polimerazo pride tudi do razgradnje sonde, reportersko barvilo in dušilec se ločita in posledica je oddajanje fluorescence reporterskega barvila. V vsakem ciklu pomnoževanja računalniški program zabeleži jakost fluorescentnega signala in izriše krivuljo pomnoževanja, ki predstavlja odvisnost spremembe jakosti fluorescence od števila ciklov (29).
2 NAMEN, HIPOTEZE IN CILJI

SSc je neozdravljiva avtoimunska bolezen, zaznamovana s fibrozo, ki lahko vodi do hudih pljučnih sprememb. Ker je fibroza lahko posledica okvar pri celjenju ran, je širši namen magistrske naloge postavitev in optimizacija celičnega modela celjenja poškodbe monoplastne kulture primarnih humanih pljučnih fibroblastov.

Protein akutne faze SAA je povišan pri bolnikih s SSc, in povišane vrednosti SAA korelirajo s poslabšanjem pljučnih funkcij. Zaenkrat še ni znano, ali SAA lahko stimulira aktivacijo pljučnih fibroblastov, kako vpliva na izražanje vnetnih citokinov, kemokinov, adhezivnih molekul, razgradnih encimov ter ali igra vlogo v modelu celjenja ran na celičnem nivoju. V nalogi bomo preliminarno ocenili primernost SAA kot stimulatorja aktivacije pljučnih fibroblastov. Prav tako nas zanima, ali SAA lahko vpliva na inhibicijo migracije pljučnih fibroblastov s kolhicinom, v celičnem modelu celjenja ran.

Preverjali bomo naslednje hipoteze:

I. SAA stimulira pljučne fibroblaste in pospešuje ekspresijo vnetnih citokinov, vključno z IL-6,

II. SAA sodeluje pri celjenju ran pljučnih fibroblastov po aplikaciji citotoksina kolhicina

Preliminarni del naloge

SPECIFIČNI CILJI naloge so DOLOČITI:

1. vpliv SAA v naraščajočih koncentracijah na IL-6 v pljučnih fibroblastih

2. spremembe na celičnem nivoju pred in po poškodbi pljučnih fibroblastov z
 a) analizo fotografiranih celic in obdelavo mikrografov,
 b) grafi zapolnitve poškodbe,

21
c) štetje celic, ki rastejo v prostor po poškodbi,

d) viabilnost celic

3. najprimernejše molekule za zasledovanje vrednotenja poškodbe in primerjati različne kazalce stanja (kot so citokini, kemokini, adhezivne molekule, proteolitični encimi) na mRNA nivoju z določanjem različnih izraženih molekul s StellArray

4. vpliv SAA pred in po poškodbi pljučnih fibroblastov na

a) izločeni IL-6 na proteinskem nivoju, ki bo določen v supernatantih pljučnih fibroblastov z ELISA),

b) IL-6 ter IL-8 na mRNA nivoju z QPCR

Rezultati nam bodo služili za razvoj celičnega modela celjenja ran na pljučnih fibroblastih, v katerem želimo postaviti okvir za nadaljnje raziskave.
3 METODE

3.1 NASAJANJE IN GOJENJE CELIC

Nasajanje celic

Glede na število zamrznjenih celic in izbrano nasaditveno gostoto smo izračunali volumen suspenzije celic, ki ga bomo nasadili v vsako vdolbinico plošče. Pred nasaditvijo celic smo v plošče za gojenje celic z 12 ali 6 vdolbinicami napipetirali hranilni bazalni medij za fibroblaste (FMB) z 10% govejim fetalnim serumom (FBS) (FMB - 10% FBS) in jih za 30 min postavili v inkubator (5% CO₂, 37 °C, 100% relativna vlažnost). Iz tekočega dušika smo vzeli zamrzovalno posodo s celicami in jo prenesli v vodno kopel na 37 °C za 2 min, da so se celice odtalile. Vsebino zamrzovalne posodice smo rahlo premešali z stresanjem, obrisali s 70% etanolom in prenesli v aseptično komoro. Z 1 ml pipeto smo prenesli celice v suspenziji (1,8 ml) v večjo 15 ml epruveto in dodali še preračunan volumen medija. Vsebino 15 ml epruvete smo rahlo premešali s pipeto. Plošče z vdolbinicami za gojenje celic smo prenesli iz inkubatorja ter odpipetirali v vsako preračunan volumen suspenzije s celicami. Po 4 h smo zamenjali popolni hranilni medij.

Izračun volumna suspenzije celic, ki jih nasadimo v vdolbinice plošč za gojenje celic

Celice nasajamo v plošče s 6 in 12 vdolbinicami. Plošče s 6 vdolbinicami imajo površino 8,96 cm², plošče z 12 vdolbinicami 3,59 cm². Glede na število celic, ki smo jih imeli na razpolago, smo izbrali nasaditveno gostoto. S pomočjo križnega računa smo izračunali volumen medija, ki smo ga dodali suspenziji celic. V plošče z 12 vdolbinicami smo v vdolbinice odpipetirali 500 µl skupnega volumena celic in hranilnega medija, v plošče s 6 vdolbinicami pa 1000 µl skupnega volumena.

enačba 1: Izračun volumna suspenzije celic

\[
\text{izbrana nasaditvena gostota} \times \text{površina vdolbinice} = \text{število celic na vdolbinico} \\
\text{število celic na vdolbinico} \rightarrow 500 \mu l \text{ ali } 1000 \mu l \\
\text{število celic v zamrzovalni posodici} \rightarrow X
\]

Menjava hranilnega medija

Hranilni medij FBM - 10% FBS smo najprej segreli v vodni kopel na 37 °C in ga prenesli v aseptično komoro. Celicam smo prvič zamenjali medij 4-5 h po nasajanju, nato pa vsak
drugi dan vse dokler celice niso dosegle ustrezne konfluentnosti (80-90% prekrivnost vdolbinic v ploščah). Dve uri pred izpostavitvijo celic različnim učinkovinam smo zamenjali hranilni medij FMB - 10% FBS z FMB - 0% FBS. Z vakuumsko črpalko smo previdno odsesali staro gojišče in s sterilnim pipetnim nastavkom dodali ustrezen volumen svežega gojišča. Pri menjavi gojišča smo pazili, da je bil curek majhen in ni bil usmerjen na površino s celicami.

Precepljanje in štetje celic

Tripsin, s fosfatom pufrano fiziološko raztopino (PBS, pH=7,2), hranilni medij (FBM - 10% FBS) in nevtralizacijsko raztopino za tripsin smo segreli v vodni kopeli na 37 °C. Ploščico s celicami smo prenesli v aseptično komoro. Medij smo zavrgli in celice sprali s 5 ml pufra PBS. Dodali smo 2 ml (plošče s 6 vdolbinicami) ali 1 ml (plošče z 12 vdolbinicami) tripsina, ki odcepi pritrjene celice od podlage in inkubirali 2 min. Po inkubaciji smo celice pogledali pod mikroskopom in preverili, če so se odlepile od podlage. Nato smo dodali še dvakratni volumen nevtralizacijske raztopine za tripsin, ki je prekinila delovanje tripsina. Na krovno stekelce smo kanili 10 µl dobro premešane celične suspenzije in ji dodali 10 µl barvila TripanBlue. Kapljico smo dobro premešali s pipetiranjem gor in dol ter nanesli 10 µl na objektno stekelce v aparat Countess (Invitrogen, Carlsbad, CA, ZDA). Aparat je preštel celice in določil njihovo viabilnost.

3.2 DELO S CELICAMI

Poskuse smo opravili v dveh delih. V prvem delu smo naredili pilotne poskuse, pri katerih smo določili pogoje dela, koncentracije in volumne učinkovin, ki smo jih kasneje uporabili pri potrditvenih poskusih.

3.2.1 Preliminarni, pilotni del

Poskus smo izvedli na celicah normalnih humanih pljučnih fibroblastih (NHLF) tretje pasaže, ki smo jih gojili v ploščah z 12 vdolbinicami. Celice so bile pripravljene za eksperiment, ko so dosegle 80 - 90% konfluentnost. Pred eksperimentom smo celicam zamenjali gojišče z FBM - 0% FBS. Nato smo v aseptično komori s 100 µl pipetnimi nastavki naredili vodoravno in navpično poškodbo preko vsake vdolbinice na plošči. Na spodnji strani plošča z vdolbinicami smo na presečišču navpične in vodoravne poškodbe označili referenčno točko, ki nam je kasneje služila pri fotografiranju. Fotografirali smo vidno polje pod referenčno točko in sicer tako, da je bil del referenčne točke še viden.
Fotografirali smo pri 4x in 10x povečavi. Nato smo celice stimulirali z različnimi koncentracijami EGF, SAA, HC, KOL ter IL-1β (preglednice I-V). Po 24 h inkubaciji smo isto vidno polje z referenčno točko ponovno fotografirali pri 4x in 10x povečavi kot pred stimulacijo in tako smo lahko primerjali, kako se je prostor poškodbe zapolnil. Supernatante iz posamezne vdolbinice smo prenesli v 1,5 ml epico, jih centrifugirali 5 min na 5000 RPM. Po centrifugiranju smo supernatant prenesli v novo 1,5 ml epico ter shranili na -20 °C za določitev IL-6 z metodo ELISA. Celice pritrjene na podlago plošče smo po obdelavi in nanosu na objektino stekelce prešteli s pomočjo aparata Countess (Invitrogen, Carlsbad, CA, ZDA), ki nam je podal število in viabilnost celic.

Preglednica I: Od odmeka odvisen odgovor pozitivne in negativne kontrole za celični model celjenja ran

B – kontrola ozadja brez dodanih učinkovin, EGF – epidermalni rastni faktor, HC – hidrokortizon, FBM - bazalni medij za fibroblaste

<table>
<thead>
<tr>
<th>Učinkovine</th>
<th>Končna koncentracija</th>
<th>Volumen</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>/</td>
<td>500 µl FBM</td>
</tr>
<tr>
<td>EGF (2,5 µg/500 µl H₂O)</td>
<td>2,5 nM</td>
<td>1,58 µl/500 µl</td>
</tr>
<tr>
<td>EGF</td>
<td>5 nM</td>
<td>3,16 µl/500 µl</td>
</tr>
<tr>
<td>EGF</td>
<td>10 nM</td>
<td>6,33 µl/500 µl</td>
</tr>
<tr>
<td>EGF</td>
<td>15 nM</td>
<td>9,5 µl/500 µl</td>
</tr>
<tr>
<td>EGF</td>
<td>30 nM</td>
<td>19 µl/500 µl</td>
</tr>
<tr>
<td>HC (100 µg/500 µl)</td>
<td>1 nM</td>
<td>0,9 µl(1:1000)/500 µl</td>
</tr>
<tr>
<td>HC</td>
<td>10 nM</td>
<td>9 µl(1:1000)/500 µl</td>
</tr>
<tr>
<td>HC</td>
<td>50 nM</td>
<td>4,5 µl(1:100)/500 µl</td>
</tr>
<tr>
<td>HC</td>
<td>100 nM</td>
<td>9 µl(1:100)/500 µl</td>
</tr>
<tr>
<td>HC</td>
<td>200 nM</td>
<td>1,8 µl(1:10)/500 µl</td>
</tr>
</tbody>
</table>
Preglednica II: Od odmerka odvisen odgovor SAA
(B – kontrola ozadja brez dodanih učinkovin, EGF – epidermalni rastni faktor, HC – hidrokortizon, SAA – serumski amiloid A, FBM - bazalni medij za fibroblaste)

<table>
<thead>
<tr>
<th>Učinkovine</th>
<th>Končna koncentracija</th>
<th>Volumen</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>/</td>
<td>500 µl FBM</td>
</tr>
<tr>
<td>EGF</td>
<td>10 nM</td>
<td>6,33 µl/500 µl</td>
</tr>
<tr>
<td>HC</td>
<td>200 nM</td>
<td>1,8 µl(1:10)/500 µl</td>
</tr>
<tr>
<td>SAA (1 g/l)</td>
<td>1 nM</td>
<td>6 µl(1:1000)/500 µl</td>
</tr>
<tr>
<td>SAA</td>
<td>10 nM</td>
<td>60 µl(1:1000)/500 µl</td>
</tr>
<tr>
<td>SAA</td>
<td>100 nM</td>
<td>60 µl(1:100)/500 µl</td>
</tr>
<tr>
<td>SAA</td>
<td>500 nM</td>
<td>3 µl/500 µl</td>
</tr>
<tr>
<td>SAA</td>
<td>1000 nM</td>
<td>6 µl/500 µl</td>
</tr>
</tbody>
</table>

Preglednica III: Kombinacija inkubacije SAA in IL-1β

Celice smo nasadili kot pri ostalih poskusih, le da smo jim tokrat v vdolbinicah 4,5 in 6 najprej dodali IL-1β in jih inkubirali 3 h, nato pa v istih vdolbinicah zamenjali gojišče, ki smo mu dodali SAA. (B – kontrola ozadja brez dodanih učinkovin, EGF – epidermalni rastni faktor, HC – hidrokortizon, SAA – serumski amiloid A, IL-1β – interlevkin – 1 beta, FBM - bazalni medij za fibroblaste)

<table>
<thead>
<tr>
<th>Učinkovine</th>
<th>Končna koncentracija</th>
<th>Volumen</th>
<th>Dodatek SAA po 3 h</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>/</td>
<td>500 µl FBM</td>
<td></td>
</tr>
<tr>
<td>EGF</td>
<td>5 nM</td>
<td>3,16 µl/500 µl</td>
<td></td>
</tr>
<tr>
<td>HC</td>
<td>200 nM</td>
<td>18 µl(1:100)/500 µl</td>
<td></td>
</tr>
<tr>
<td>IL-1β</td>
<td>100 pg/ml IL-1β + 1000 nM SAA</td>
<td>0,5 µl IL-1β/500 µl</td>
<td></td>
</tr>
<tr>
<td>(25 µg/250 µl H₂O)+SAA</td>
<td></td>
<td>6 µl SAA/500 µl</td>
<td></td>
</tr>
<tr>
<td>IL-1β+SAA</td>
<td>500 pg/ml IL-1β + 1000 nM SAA</td>
<td>2,5 µl IL-1β/500 µl</td>
<td></td>
</tr>
<tr>
<td>IL-1β+SAA</td>
<td>1000 pg/ml IL-1β + 1000 nM SAA</td>
<td>5 µl IL-1β/500 µl</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>6 µl SAA/500 µl</td>
<td></td>
</tr>
</tbody>
</table>
Preglednica IV: Od odmerka odvisen odgovor inhibitorja kolhicina

Celiscamo v gojišče dodali različne koncentracije citotoksina kolhicina, jih inkubirali 3 h, nato pa zamenjali gojišče z FBM - 0% FBS in inkubirali 24 h. (*B – kontrola ozadja brez dodanih učinkovin, EGF – epidermalni rastni faktor, KOL – kolhcin, FBM - bazalni medij za fibroblaste*)

<table>
<thead>
<tr>
<th>Učinkovine</th>
<th>Končna koncentracija</th>
<th>Volumen</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>/</td>
<td>500 µl FBM</td>
</tr>
<tr>
<td>EGF</td>
<td>5 nM</td>
<td>3,16 µl/500 µl</td>
</tr>
<tr>
<td>KOL (100 ng/2,2 ml H2O)</td>
<td>0,3 nM</td>
<td>1,3 µl (1:10⁶)/500 µl</td>
</tr>
<tr>
<td>KOL</td>
<td>3 nM</td>
<td>13 µl (1:10⁵)/500 µl</td>
</tr>
<tr>
<td>KOL</td>
<td>30 nM</td>
<td>1,3 µl (1:10⁴)/500 µl</td>
</tr>
<tr>
<td>KOL</td>
<td>100 nM</td>
<td>4,4 µl (1:10³)/500 µl</td>
</tr>
<tr>
<td>KOL</td>
<td>300 nM</td>
<td>1,3 µl (1:1000)/500 µl</td>
</tr>
</tbody>
</table>

Preglednica V: Kombinacije različnih koncentracij kolhicina in SAA

Celiscamo najprej v gojišče dodali različne koncentracije kolhicina, jih inkubirali 3 h, nato zamenjali gojišča, ki smo jim dodali določene koncentracije SAA. (*B – kontrola ozadja brez dodanih učinkovin, EGF – epidermalni rastni faktor, KOL – kolhcin, SAA – serumski amiloid A, FBM - bazalni medij za fibroblaste*)

<table>
<thead>
<tr>
<th>Učinkovine</th>
<th>Končna koncentracija</th>
<th>Volumen</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>/</td>
<td>500 µl FBM</td>
</tr>
<tr>
<td>EGF</td>
<td>5 nM</td>
<td>3,16 µl/500 µl</td>
</tr>
<tr>
<td>KOL + SAA</td>
<td>30 nM KOL+500 nM SAA</td>
<td>1,3 µl (1:10⁵) KOL/500 µl</td>
</tr>
<tr>
<td>KOL + SAA</td>
<td>30 nM KOL+1000 nM SAA</td>
<td>1,3 µl (1:10⁴) KOL/500 µl</td>
</tr>
<tr>
<td>KOL + SAA</td>
<td>100 nM KOL+500 nM SAA</td>
<td>4,4 µl (1:10³) KOL/500 µl</td>
</tr>
<tr>
<td>KOL + SAA</td>
<td>100 nM KOL+1000 nM SAA</td>
<td>4,4 µl (1:10³) KOL/500 µl</td>
</tr>
<tr>
<td>KOL + SAA</td>
<td>300 nM KOL+1000 nM SAA</td>
<td>1,3 µl (1:10⁴) KOL/500 µl</td>
</tr>
</tbody>
</table>

3.2.2 Potrditveni poskusi

Po končanem preliminarnem delu smo določili pogoje dela in koncentracije stimulatorjev/inhibitorjev, ki so bili najbolj optimalni in pri katerih je bila sprememba celičnega celjenja najvidnejša. Celice smo nasadili v dveh serijah plošč. V prvi seriji smo
naredili navpično poškodbo čez vdolbinico, v drugi seriji pa poškodb nismo naredili. S tem smo želeli preveriti, če sama poškodba vpliva na izločanje določenih citokinov, kemokinov in drugih vnetnih dejavnikov, kar smo kasneje preverjali z ELISA in QPCR.

Poskuse smo izvedli na celicah NHLF tretje pasaže, ki smo jih gojili v ploščah s 6 vdolbinicami. Celice smo nasadili v skupno 1000 µl medija na vdolbinico. 2 h pred eksperimentom smo celicam zamenjali gojišče s FBM - 0% FBS. Nato smo pri prvi seriji plošč v aseptični komori s 100 µl pipetnimi nastavki naredili navpično poškodbo preko vsake vdolbinice. Ploščo smo kot pri preliminarnih poskusih označili na spodnji strani, da smo lahko fotografirali enako vidno polje na začetku poskusa in po 24 h inkubaciji. Druge serije plošč z vdolbinicami nismo poškodovali. Nato smo celicam obeh serij plošč dodali prej preračunane volume učinkovin (preglednice VI - IX). Po 24 h inkubaciji smo celice v prvi seriji plošč fotografirali, celice v drugi seriji plošč pa le pregledali, če je prišlo do morfoloških razlik. Supernatante iz posameznih vdolbinic smo odpipetirali v 1,5 ml epico, jih centrifugirali 5 min na 5000 RPM, supernatante prenesli v novo 1,5 ml epico ter shranili na -20 °C za določitev IL-6. Celice pritrjene na podlago smo lizirali s 350 µl Buffer RLT Plus (Qiagen, Hilden, Nemčija), izolirali mRNA, z reverzno transkripcijo mRNA prepisali v cDNA in z QPCR določali spremembe na genskem nivoju.

Preglednica VI: Kombinacije SAA z EGF in hidrokortizonom

(B – kontrola ozadja brez dodanih učinkovin, EGF – epidermalni rastni faktor, pozitivna kontrola, HC – hidrokortizom, negativna kontrola, SAA – serumski amiloid A, FBM - bazalni medij za fibroblaste)

<table>
<thead>
<tr>
<th>Učinkovine</th>
<th>Končna koncentracija</th>
<th>Volumnen</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>/</td>
<td>1000 µl FBM</td>
</tr>
<tr>
<td>EGF</td>
<td>5 nM</td>
<td>6.3 µl/1000 µl</td>
</tr>
<tr>
<td>EGF + SAA</td>
<td>5 nM EGF+ 1000 nM SAA</td>
<td>6.3 µl EGF + 12 µl SAA /1000 µl</td>
</tr>
<tr>
<td>SAA</td>
<td>1000 nM</td>
<td>12 µl/1000 µl</td>
</tr>
<tr>
<td>HC</td>
<td>200 nM</td>
<td>36 µl (1:100)/1000 µl</td>
</tr>
<tr>
<td>HC + SAA</td>
<td>200 nM HC + 1000 nM SAA</td>
<td>36 µl HC(1:100)+12 µl SAA/1000 µl</td>
</tr>
</tbody>
</table>
Preglednica VII: Od odmerka odvisen odgovor SAA

(B – kontrola ozadja brez dodanih učinkovin, EGF – epidermalni rastni faktor, pozitivna kontrola, HC – hidrokortizon, negativna kontrola, SAA – serumski amiloid A, FBM - bazalni medij za fibroblaste)

<table>
<thead>
<tr>
<th>Učinkovine</th>
<th>Končna koncentracija</th>
<th>Volumen</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>/</td>
<td>1000 µl FBM</td>
</tr>
<tr>
<td>EGF</td>
<td>5 nM</td>
<td>6,3 µl/1000 µl</td>
</tr>
<tr>
<td>HC</td>
<td>500 nM</td>
<td>45 µl(1:100)/1000 µl</td>
</tr>
<tr>
<td>SAA</td>
<td>50 nM</td>
<td>0,6 µl/1000 µl</td>
</tr>
<tr>
<td>SAA</td>
<td>500 nM</td>
<td>6 µl/1000 µl</td>
</tr>
<tr>
<td>SAA</td>
<td>1000 nM</td>
<td>12 µl/1000 µl</td>
</tr>
</tbody>
</table>

Preglednica VIII: Naraščajoče koncentracije citotoksina kohlicina

Celice smo kot v preliminarnih poskusih 3 h inkubirali s kohlicinom, nato smo zamenjali gojišče za FBM - 0% FBS in celice inkubirali še 24 h. (B – kontrola ozadja brez dodanih učinkovin, EGF – epidermalni rastni faktor, pozitivna kontrola, HC – hidrokortizon, negativna kontrola, KOL - kohlicin, FBM - bazalni medij za fibroblaste)

<table>
<thead>
<tr>
<th>Učinkovine</th>
<th>Končna koncentracija</th>
<th>Volumen</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>/</td>
<td>1000 µl FBM</td>
</tr>
<tr>
<td>EGF</td>
<td>5 nM</td>
<td>6,3 µl/1000 µl</td>
</tr>
<tr>
<td>HC</td>
<td>500 nM</td>
<td>45 µl(1:100)/1000 µl</td>
</tr>
<tr>
<td>KOL</td>
<td>30 nM</td>
<td>2,6 µl(1:10³)/1000 µl</td>
</tr>
<tr>
<td>KOL</td>
<td>100 nM</td>
<td>8,8 µl(1:10³)/1000 µl</td>
</tr>
<tr>
<td>KOL</td>
<td>300 nM</td>
<td>2,6 µl(1:1000)/1000 µl</td>
</tr>
</tbody>
</table>

Preglednica IX: Inhibitor kohlicin v prisotnosti in odsotnosti naraščajočih koncentracij SAA

V vdolbinice 4 – 9 smo v gojišče dodali kohlicin, po 3 h stimulacije s kohlicinom smo vdolbinicam 4, 5, 6 in 7 zamenjali gojišče z FBM - 0% FBS, ki smo mu dodali SAA. Vdolbinicam 8 in 9 smo po 3 h prav tako zamenjali gojišče z FBM - 0% FBS. (B – kontrola ozadja brez dodanih učinkovin, EGF – epidermalni rastni faktor, pozitivna kontrola, HC – hidrokortizon, negativna kontrola, KOL - kohlicin, FBM - bazalni medij za fibroblaste)
konrola, HC – hidrokortizon, negativna kontrola, KOL - kolhicin, SAA – serumski amiloid A, FBM - bazalni medij za fibroblaste

<table>
<thead>
<tr>
<th>Učinkovine</th>
<th>Končna koncentracija</th>
<th>Volumen</th>
<th>Dodatek SAA po 3 h</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>/</td>
<td>1000 µl FBM</td>
<td></td>
</tr>
<tr>
<td>EGF</td>
<td>5 nM</td>
<td>6,3 µl/1000 µl</td>
<td></td>
</tr>
<tr>
<td>HC</td>
<td>500 nM</td>
<td>45 µl(1:100)/1000 µl</td>
<td></td>
</tr>
<tr>
<td>KOL + SAA</td>
<td>100 nM KOL+ 500 nM SAA</td>
<td>8,8 µl (1:10^5)KOL/1000 µl</td>
<td>6 µl</td>
</tr>
<tr>
<td>KOL + SAA</td>
<td>100 nM KOL+ 1000 nM SAA</td>
<td>8,8 µl(1:10^5) KOL/1000 µl</td>
<td>12 µl</td>
</tr>
<tr>
<td>KOL + SAA</td>
<td>300 nM KOL+ 500 nM SAA</td>
<td>2,6 µl(1:1000) KOL/1000 µl</td>
<td>6 µl</td>
</tr>
<tr>
<td>KOL + SAA</td>
<td>300 nM KOL+1000 nM SAA</td>
<td>2,6 µl(1:1000) KOL/1000 µl</td>
<td>12 µl</td>
</tr>
<tr>
<td>KOL</td>
<td>100 nM</td>
<td>8,8 µl (1:10^5)/1000 µl</td>
<td></td>
</tr>
<tr>
<td>KOL</td>
<td>300 nM</td>
<td>2,6 µl (1:1000)/ 1000 µl</td>
<td></td>
</tr>
<tr>
<td>SAA</td>
<td>500 nM</td>
<td>6 µl/1000 µl</td>
<td></td>
</tr>
<tr>
<td>SAA</td>
<td>1000 nM</td>
<td>12 µl/1000 µl</td>
<td></td>
</tr>
<tr>
<td>EGF+SAA</td>
<td>5 nM + 1000 nM SAA</td>
<td>6,3 µl EGF+12 µl SAA/1000 µl</td>
<td></td>
</tr>
</tbody>
</table>

3.3 IL-6 ELISA

Najprej smo, glede na število testiranih vzorcev, določili ustrezno število vrstic mikrotitrske ploščice. Pripravili smo tabelo z vrstnim redom nanašanja vzorcev in standardov ter dodatne epice za redčenje tistih vzorcev, kjer smo pričakovali visoke koncentracije IL-6.

Spiralni pufer, standarde IL-6 in delovno raztopino Streptavidin-HRP (Streptavidin-HRP working solution) smo pripravili po navodilih proizvajalca (BioSource, Nivelles, Belgija).
Na ploščico smo nanesli po 100 µl pripravljenih standardov in vzorcev po vrsti kot smo pripravili načrt. V vse vdolbinice plošče smo poleg vzorcev in standardov nanesli po 50 µl biotiniliranega sekundarnega protitelesa proti humanem IL-6, ploščo rahlo potresli in inkubirali 2 h v temi. Po inkubaciji je sledilo spiranje s spiralnim pufrom. Po spiranju smo v vse vdolbinice dodali po 100 µl delovne raztopine Streptavidin-HRP, ploščico rahlo potresali ter inkubirali v temi 30 min. Po inkubaciji smo ploščico ponovno sprali s spiralnim pufrom in jo močno otresli na staničevini. Nato smo v vse vdolbinice dodali po 100 µl stabilizacijskega kromogena. Po končani 30 min inkubaciji smo v vdolbinice dodali
po 100 µl raztopine za ustavitev reakcije in na UV spektrofotometru Tecan SUNRISE (Tecan Group AG, Männedorf, Švica) pomerili absombo pri 450 nm. Na osnovi izmerjene absorbance standardov z znano koncentracijo smo s pomočjo umerekene krivulje določili koncentracijo IL-6 v vzorcih. Vzorce, pri katerih je bila izmerjena absorbanca višja od najvišjega standarda, smo dodatno redčili in ponovno analizirali.

3.4 IZOLACIJA RNA

Za izolacijo RNA smo uporabili komplet reagentov RNeasy® Plus Micro Kit (Qiagen, Hilden, Nemčija). Reagente in ploščice s celicami smo ogreli na sobno temperaturo. Predhodno lizirane celiče v vdolbinicah ploščice smo postrgali s strgalci, da smo pobrali čim več celic, nato smo 350 µl raztopine za liziranje skupaj s celicami prenesli v naprej pripravljene epice. Epice smo močno premešali in prenesli lizat na kolono za odstranjevanje DNA iz vzorca (gDNA Eliminator spin column). Gre za kolono z 2 ml zbirno epico. Na koloni se zadrži DNA, preostanek pa se po 30 s centrifugiranju pri več kot 10000 RPM prefiltrira preko kolone v zbirno epico. Nato smo zavrgli kolono in se s tem znebili DNA iz vzorca. Vzorcu smo dodali 350 µl 70% EtOH, ga dobro premešali in vzorec nato prenesli na kolono za odstranjevanje RNA iz vzorca (Rneasy MinElute spin column) ter centrifugirali 15 s pri več kot 10000 RPM. Gre za kolono, ki zadrži RNA, preostanek se po centrifugiranje zadrži v zbirni epici pod kolono. Zbirno epico s tekočino smo zavrgli, kolono pa smo prenesli v novo serijo zbirnih epic. Na kolono smo najprej nanesli 700 µl pufra RW1 in centrifugirali 15 s pri več kot 10000 RPM, nato še 500 µl pufra RPE in centrifugirali 15 s pri več kot 10000 RPM. Nato smo na kolono nanesli 80% EtOH ter centrifugirali 2 min pri več kot 10000 RPM. Kolono smo prenesli v novo zbirno epico in jo odprto centrifugirali pri maksimalni hitrosti (14000 RPM) 2 min. Zbirno epico smo zavrgli in kolono prenesli v prej pripravljeno in označeno serijo epic za RNA. Direktno na sredino membrane smo dodali 14 µl vode brez nukleaz in centrifugirali 1 min pri maksimalni hitrosti. Tako smo sprali RNA iz kolone in jo prenesli v epico. Tako je bil vzorec pripravljen na ugotavljanje čistosti ter izkoristka RNA.

3.4.1 Spektrofotometrično določanje čistosti in izkoristka RNA

Koncentracijo in čistost izolirane RNA smo določali spektrofotometrično z merjenjem absorbanci pri valovnih dolžinah 260 in 280 nm z napravo Nanodrop 2000C Spectrophotometer (Thermo Scientific, Waltham, ZDA). Razmerje A_{260}/A_{280} nam poda rezultat čistosti produkta v vzorcu. Primerno razmerje je med 1,8 in 2,0. Če je rezultat v

Enačba 2: Izračun koncentracije RNA

\[c_{RNA} = A_{260} \times 40 \]

3.5 REVERZNA TRANSKRIPCIJA

S pomočjo reverzne transkripcije smo izolirano mRNA prepisali v komplementarno enoverižno DNA (cDNA). Skupen volumen v epici mora biti 30 µl in sestoji iz 14,4 µl reakcijske mešanice, preračunanega volumna vzorca in vode brez nukleaz.

Preglednica X: Sestava reakcijske mešanice za reverzno transkripcijo

\(RT \) pufer – pufer za reverzno transkripcijo, dNTP – nukleotidi, oligo dT – timidinski nukleotidi, AMV RT – encim reverzna transkriptaza virusa ptičje mieloblastoze (Avian Myeloblastosis Virus)

<table>
<thead>
<tr>
<th>Reagenti</th>
<th>1x</th>
</tr>
</thead>
<tbody>
<tr>
<td>10x RT pufer</td>
<td>3 µl</td>
</tr>
<tr>
<td>dNTP (10mM)</td>
<td>3 µl</td>
</tr>
<tr>
<td>MgCl₂ (25mM)</td>
<td>6 µl</td>
</tr>
<tr>
<td>Oligo dT (500µl/ml)</td>
<td>1 µl</td>
</tr>
<tr>
<td>RNAzni inhibitor (40U/µl)</td>
<td>0,75 µl</td>
</tr>
<tr>
<td>AMV RT (25U/µl)</td>
<td>0,6 µl</td>
</tr>
<tr>
<td>H₂O brez nukleaz</td>
<td>0,05 µl</td>
</tr>
<tr>
<td>Skupni volumen</td>
<td>14,4 µl</td>
</tr>
</tbody>
</table>

Epice smo centrifugirali 1 min na 10000 RPM, nato smo jih postavili v aparaturu Applied Biosystems, 2720 Thermal Cycler (Applied Biosystems, Foster City, CA, ZDA) in nastavili program za reverzno transkripcijo, ki je sestavljen iz 30 min inkubacije pri 43 °C, 30 min inkubacije pri 53 °C in 5 min inkubacije pri 94 °C. Po končani reakciji smo dobljene produkte shranili na -20 °C.
3.6 KVANTITATIVNA VERIŽNA REAKCIJA S POLIMERAZO V REALNEM ČASU

Preglednica XI: Priprava standardov z redčitvijo 1:10

(ST – standard)

<table>
<thead>
<tr>
<th>Priprava standardne krivulje</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 1</td>
<td>1,92 µl »pool vzorca« direktno na ploščico za PCR</td>
</tr>
<tr>
<td>ST 2</td>
<td>2 µl »pool vzorca«</td>
</tr>
<tr>
<td></td>
<td>18 µl vode brez nukleaz</td>
</tr>
<tr>
<td>ST 3</td>
<td>2 µl ST2</td>
</tr>
<tr>
<td></td>
<td>18 µl vode brez nukleaz</td>
</tr>
<tr>
<td>ST 4</td>
<td>2 µl ST3</td>
</tr>
<tr>
<td></td>
<td>18 µl vode brez nukleaz</td>
</tr>
<tr>
<td>ST 5</td>
<td>2 µl ST4</td>
</tr>
<tr>
<td></td>
<td>18 µl vode brez nukleaz</td>
</tr>
</tbody>
</table>

Nato smo pripravili reakcijsko mešanico za QPCR. Najprej smo naredili QPCR za hišni gen 18S, kateri nam je služil za normalizacijo, nato smo naredili QPCR za izbrane-tarčne gene.

Preglednica XII: Reakcijska mešanica za referenčni gen 18S

<table>
<thead>
<tr>
<th>Priprava reakcijske mešanice za QPCR 18S</th>
<th>1x</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reakcijska mešanica (Master Mix 2x)</td>
<td>10 µl</td>
</tr>
<tr>
<td>20x18S kontrolnih oligonukleotidnih začetnikov</td>
<td>1 µl</td>
</tr>
<tr>
<td>H₂O brez nukleaz</td>
<td>7,08 µl</td>
</tr>
<tr>
<td>Skupni volumen</td>
<td>18,08 µl</td>
</tr>
</tbody>
</table>
Preglednica XIII: Reakcijska mešanica za QPCR (F – F (»forward«) oligonukleotidni začetnik, R – R (»reverse«) oligonukleotidni začetnik)

<table>
<thead>
<tr>
<th></th>
<th>KAPPA 1x</th>
</tr>
</thead>
<tbody>
<tr>
<td>KAPPA fast</td>
<td>6 µl</td>
</tr>
<tr>
<td>F (+R) oligonukleotidni začetnik (200 nM)</td>
<td>0,24 µl</td>
</tr>
<tr>
<td>(R oligonukleotidni začetnik (200 nM))</td>
<td>0,24 µl</td>
</tr>
<tr>
<td>ROX High</td>
<td>0,24 µl</td>
</tr>
<tr>
<td>H₂O brez nukleaz</td>
<td>3,6 µl (3,36 µl)</td>
</tr>
<tr>
<td>Skupni volumen</td>
<td>10,08 µl</td>
</tr>
</tbody>
</table>

*v primeru, da sta F in R ločena: 0,24 µl F in 0,24 µl R oligonukleotidna začetnika ter 3,6 µl H₂O; če sta oligonukleotidna začetnika R in F skupaj: 0,24 µl R+F in 3,36 µl H₂O.

Pripravili smo si načrt nanašanja vzorcev, standardov in PCR kontrole brez cDNA (NTC) na ploščico (Preglednica XIV). Najprej smo v vdolbinice nanesli reakcijsko mešanico, nato pa vzorce in standarde v dvojnikih. Pri QPCR 18S smo v vsako vdolbinico nanesli po 18,08 µl reakcijske mešanice, 1,92 µl vzorcev/1,92 µl standardov/1,92 µl NTC. Pri QPCR za posamezen gen smo v vdolbinice nanesli po 10,08 µl reakcijske mešanice in 1,92 µl vzorca/1,92 µl standarda/1,92 µl NTC.

Preglednica XIV: Načrt nanašanja vzorcev, standardov in NTC na PCR ploščico

(NTC - PCR kontrola brez cDNA (angl. »No Template Control«), ST – standard, VZ – vzorec)

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>NTC</td>
<td>NTC</td>
<td>ST1</td>
<td>ST1</td>
<td>ST2</td>
<td>ST2</td>
<td>ST3</td>
<td>ST3</td>
</tr>
<tr>
<td>B</td>
<td>ST4</td>
<td>ST4</td>
<td>ST5</td>
<td>ST5</td>
<td>VZ1</td>
<td>VZ1</td>
<td>VZ2</td>
<td>VZ2</td>
</tr>
<tr>
<td>C</td>
<td>VZ3</td>
<td>VZ3</td>
<td>VZ4</td>
<td>VZ4</td>
<td>VZ5</td>
<td>VZ5</td>
<td>VZ6</td>
<td>VZ6</td>
</tr>
<tr>
<td>D</td>
<td>VZ7</td>
<td>VZ7</td>
<td>VZ8</td>
<td>VZ8</td>
<td>VZ9</td>
<td>VZ9</td>
<td>VZ10</td>
<td>VZ10</td>
</tr>
<tr>
<td>E</td>
<td>VZ11</td>
<td>VZ11</td>
<td>VZ12</td>
<td>VZ12</td>
<td>VZ13</td>
<td>VZ13</td>
<td>VZ14</td>
<td>VZ14</td>
</tr>
</tbody>
</table>

Ploščico smo prelepili s folijo in centrifugirali 5 min pri 1800 RPM. Ploščico smo položili v aparat za PCR (Applied Biosystems, Step One Real-Time PCR System, Foster City, ZDA) in zagnali program za QPCR.
3.7 STELLARRAY

StellARray je PCR ploščica z vdolbinicami, v katerih so naneseni oligonukleotidni začetniki za različne gene. Služi sočasnemu preverjanju ekspresije različnih genov na istem vzorcu. V našem primeru smo sicer analizirali ekspresijo 48 različnih genov, vendar bodo za naš namen predstavljeni le geni, ki so najbolj vpleteni v celični model celjenja ran. Opis reakcijske mešanice za StellARray je predstavljen v preglednici XV.

Preglednica XV: Reakcijska mešanica za StellARray
(cDNA – komplementarna deoksiribonukleinska kisina)

<table>
<thead>
<tr>
<th></th>
<th>1x</th>
</tr>
</thead>
<tbody>
<tr>
<td>KAPPA fast</td>
<td>6 µl</td>
</tr>
<tr>
<td>H₂O brez nukleaz</td>
<td>4,8 µl</td>
</tr>
<tr>
<td>cDNA</td>
<td>1,2 µl</td>
</tr>
<tr>
<td>Skupni volumen</td>
<td>12 µl</td>
</tr>
</tbody>
</table>

Ploščico z nanesenimi oligonukleotidnimi začetniki (Preglednica XVI), reagente in vzorce smo odtalili. KAPPA fast smo zmešali z H₂O brez nukleaz in cDNA vzorca ter po 12 µl nanašali v vsako vdolbinico na ploščici. Ploščico smo prelepili s folijo in centrifugirali 2 min na 1800 RPM. Nato smo ploščico pustili stati 30 min na sobni temperaturi, da se je vsebina v vdolbinici dobro raztopila in premešala. Ploščico smo položili v aparat za PCR (Applied Biosystems, Step One Real-Time PCR System) in zagnali program. Program sestoji iz 1 min inkubacije na 50 °C, 3 min na 95 °C; in nato 3 s na 95 °C in 20 s na 60 °C, kar se 40x ponovi.

Preglednica XVI: Ploščica za StellARray z oligonukleotidnimi začetniki
(GAPDH - gliceraldehid 3-fosfat dehidrogenaza, GS genomic - humana genomska DNA, CTGF - rastni faktor vezivnega tkiva, IL - interleukvin, MMP - matriks metaloproteinaza, COLIA2 - kolagen tipa 2, alfa 2, COLIA2 - kolagen tipa 1, alfa 1, SERPINH1 - serpin peptidazni inhibitor, »clade« H, PAI-1 - inhibitor peptidaznega aktivatorja 1)

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>GAPDH</td>
<td>HSGenomic</td>
<td>CTGF</td>
<td>IL-1B</td>
<td>IL-6</td>
<td>IL-8</td>
<td>MMP-1</td>
<td>MMP-9</td>
</tr>
<tr>
<td>B</td>
<td>MMP-12</td>
<td>COL-1-A2</td>
<td>COL-1-A1</td>
<td>SERPIN H1</td>
<td>PAI-1</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
3.8 OBDELAVA MIKROGRAFOV

Vsako ploščico s celicami smo označili in fotografirali takoj po stimulaciji, nato pa še po končani 24 h inkubaciji. Vdolbinice ploščic smo označili z referenčnimi točkami, da smo obakrat fotografirali enako vidno polje. Fotografirali smo vidno polje pod točko tako, da je bil del točke še viden (Slika 1). Po končanih eksperimentih smo s pomočjo obdelave mikrografov s programom Nikon NIS ELEMENTS D preračunali površino poškodbe (brez celic) na začetku in po koncu inkubacije. Uporabili smo mikrografe fotografirane pri 4x povečavi. S pomočjo programa smo najprej zajeli površino celotnega mikrografa in rezultat podali v procentih - 100%. Nato smo zajeli površino poškodbe na mikrografu pred inkubacijo in podali površino poškodbe v procentih glede na celotni mikrograf (100%). Enako smo naredili pri mikrografu po inkubaciji (Slika 1). Razlika v površini poškodbe med mikrografom pred inkubacijo in mikrografom po inkubaciji nam je podala rezultat celjenja poškodbe.

4 MATERIALI

4.1 REAGENTI

- 96% etanol (raztopina 70% etanola); Sigma-Aldrich GmbH, Munich, Nemčija
- razkužilo (Kohrsolin FF); Bode Chemie, Nemčija
- 10x DPBS, Dulbecco’s fosfatni pufer (Dulbecco’s phosphate buffered saline without Ca$^{++}$ and Mg$^{++}$); Bio Whittaker™, Cambrex, Verviers, Belgija
- voda za mešanje pufrov in redčenje etanola (Biowater™ destilled water for cells); Cambrex, Verviers, Belgija
- tripsin 10x raztopina (Trypsin/Versene EDTA); Cambrex, Walkersville, MD, ZDA
- raztopina za nevtralizacijo tripsina (Trypsin Neutralising Solution); Clonetics™, Cambrex, Walkersville, MD, ZDA
- tripansko modrilo (Trypan Blue Stain 0.4% 100 ml); Bio Whittaker™, Cambrex, Walkersville, MD, ZDA
- krioprotektant (Lonza, Basel, Švica)
- reagenti za encimsko imunsko metodo na trdnem nosilcu za IL-6 (BioSource Immunoassay Kit Human Interleukin-6 (Hu IL-6) ELISA); BioSource, Nivelles, Belgija
- reagenti za izolacijo RNA (RNeasy® Plus Micro Kit (50)); QIAGEN, Hilden, Nemčija
- reagenti za reverzno transkripcijo (Reverse Transcription System); Promega, Madison, WI, ZDA
- reagenti za verižno reakcijo s polimerazo
 - reakcijska mešanica za 18S (Applied Biosystems, TaqMan Universal PCR Master Mix)
 - reakcijska mešanica za posamezne gene (Kappa Biosystems, KAPPA SYBR FAST Universal qPCR Kit):
 - ploščica za PCR
 - voda brez nukleaz
- reagenti za StellARray (Custom 48 StellARray, Gene Expression System, Bar Harbor BioTechnology, ZDA, Trenton)
 - ploščica za PCR z nanesenimi oligonukleotidnimi začetniki (Bar Harbor BioTechnology)
- voda brez nukleaz
 - SAA (Peprotech, London, UK)
 - EGF (Promocell, Heidelberg, Nemčija)
 - HC (Promocell, Heidelberg, Nemčija)
 - IL-1β (GIBCO®, Life Technologies, Kalifornija, ZDA)
 - KOL (Sigma-Aldrich GmbH, Munich, Nemčija)

Preglednica XVII: Oligonukleotidni začetniki genov

Temperatura prileganja oligonukleotidnih začetnikov je bila pri oligonukleotidnem začetniku za IL-6 62 °C, pri vseh ostalih oligonukleotidnih začetnikih pa 60 °C; (MMP – matriks metaloproteinaza, VCAM – vaskularna cešična adhezijska molekula, IL – interlevkin, PAI - inhibitor plazminskega aktivatorja, CRP – C reaktivni protein, F – F (»forwards«) oligonukleotidni začetnik, R – R (»reverse«) oligonukleotidni začetnik))

<table>
<thead>
<tr>
<th>Gen</th>
<th>bazo zaporedje oligonukleotidnega začetnika</th>
</tr>
</thead>
<tbody>
<tr>
<td>MMP12</td>
<td>F 5’ – AAC CAA CGC TTG CCA AAT CC -3'</td>
</tr>
<tr>
<td></td>
<td>R 5’ – TTT CCC ACG GTA GTG ACA GC - 3’</td>
</tr>
<tr>
<td>VCAM-1</td>
<td>F 5’ – CTC AAG CAT GTC ATA TTC ACA GAA C -3’</td>
</tr>
<tr>
<td></td>
<td>R 5’ – AAC CCA AAC AAA GGC AGA GTA -3’</td>
</tr>
<tr>
<td>IL-6</td>
<td>F 5’ – CTC TTC AGA ACG AAT TGA CAA ACA A -3’</td>
</tr>
<tr>
<td></td>
<td>R 5’ – GAG ATG CCG TCG AGG ATG TAC -3’</td>
</tr>
<tr>
<td>IL-8</td>
<td>F 5’ – ACA CAG AGC TGC AGA AAT CAG -3’</td>
</tr>
<tr>
<td></td>
<td>R 5’ – TTT CAG AGA CAG CAG AGC AC -3’</td>
</tr>
<tr>
<td>IL-17A</td>
<td>F 5’ – CTG TCC CCA TCC AGC AAG AG -3’</td>
</tr>
<tr>
<td></td>
<td>R 5’ – AGG CCA CAT GGT GGA CAA TC -3’</td>
</tr>
<tr>
<td>IL-27</td>
<td>F 5’ – CCT GGT TCA AGC TGG TGT CT -3’</td>
</tr>
<tr>
<td></td>
<td>R 5’ – CTC CTG GCA GGT GAG ATT CC -3’</td>
</tr>
<tr>
<td>PAI-1</td>
<td>F 5’ – CAC AAA GAG GAA GGG TCT GTC -3’</td>
</tr>
<tr>
<td></td>
<td>R 5’ – GCA GAA AGT GAA GAT CGA GGT -3’</td>
</tr>
<tr>
<td>CRP</td>
<td>F 5’ – GTT TGG GTC CAG AGT GCT CA -3’</td>
</tr>
<tr>
<td></td>
<td>R 5’ – GCT CTG CTG GGG CAA TTC TA -3’</td>
</tr>
<tr>
<td>COL1A2</td>
<td>F 5’ – GCT GGT GTG ATG GGA TTC -3’</td>
</tr>
<tr>
<td></td>
<td>R 5’ – GGG AAC ACC TCG CTC T -3’</td>
</tr>
</tbody>
</table>
4.2 BIOLOŠKI MATERIALI

- celična kultura primarnih humanih pljučnih fibroblastov, NHLF (Lonza, Basel, Švica)
- hranilni medij FBM (Lonza, Basel, Švica)
- goveji fetalni serum (Lonza, Basel, Švica)

4.3 APARATURE IN OSTALI MATERIALI

- aseptična komora s sterilnim pretokom zraka, LaminAir scan 1.2, Heto Holten, Allerod, Danska
- avtoklav A-11, Kambič laboratorijska oprema, Semič, Slovenija
- centrifuga 3K30, Sigma, Saint Louis, Missouri, ZDA
- centrifuga – minifuge T, Sepatech, Beijerland, Nizozemska
- centrifuga, Mini spin plus, Eppendorf, HQ, Hamburg, Nemčija
- Nanodrop 2000 C Spectrophotometer; Thermo Scientific, Waltham, ZDA
- aparat za reverzno transkripcijo, Thermal Cycler 2720, Applied Biosystems, Foster City, CA, ZDA
- aparat za PCR, Applied Biosystems, Step One Real-Time PCR System, Foster City, CA, ZDA
- mikroskop Nikon ECLIPSE TS100 (Nikon Instruments, NY, ZDA)
- fotoaparat Nikon (Nikon Instruments, NY, ZDA)
- programska oprema Nikon NIS-Elements (Nikon Instruments, NY, ZDA)
- inkubator, Heto-Holten Cellhouse 154, Astel, Francija
- UV spektrofotometer Tecan SUNRISE (Tecan Group AG, Männedorf, Švica)
- aparat za štetje celic Countess™ automated cell counter (Invitrogen, Carlsbad, CA, ZDA)
- objektna stekelca za štetje celic za aparat Countess™
- 1,5 ml epruvete, Eppendorf, Hamburg, Nemčija
- 200 µl epruvete, Eppendorf, Hamburg, Nemčija
- pipeta Biohit, Biohit, Helsinki, Finska
- pipete, Eppendorf; Hamburg, Nemčija
- pipetni nastavki – stekleni, sterilni (1 ml, 10 ml, 25 ml); TPP, Trasadingen, Švica
- pipetni nastavki – sterilni s/brez filtra (10 µl, 100 µl, 1000 µl), Eppendorf HQ, Hamburg, Nemčija
- plošče s 6 vdolbinicami, Tissue culture test plates: 8,96 cm², TPP, Trasadingen, Švica
- plošče z 12 vdolbinicami, Tissue culture test plates: 3,59 cm², TPP, Trasadingen, Švica
- vakumska črpalka, Vacum Pump XF54 230 50, Millipore, Schwalbach, Nemčija
- vodna kopel tip 1003, GFL, Burgwedel, Nemčija
- vodna kopel TW8, Julabo, Seelbach, Nemčija
- shranjevalna plastenka s tekočim dušikom: Thermo Electron Corporation, Waltham, ZDA
5 REZULTATI

5.1 VPLIV SAA NA PRIMARNE ČLOVEŠKE PLJUČNE FIBROBLASTE

SAA v odvisnosti od koncentracije vpliva na izločanje IL-6 v pljučnih fibroblastih. Izločanje IL-6 je bilo v primerjavi s kontrolo ozadja brez dodanih učinkovin (B) povišano za 6 krat že pri 50 nM SAA, pri 500 nM SAA je bilo izločanje IL-6 najvišje (30 krat višje kot B) in je doseglo vrh, pri 1000 nM se je izločanje znižalo v primerjavi s 500 nM (Slika 2).

Slika 2: Vpliv naraščajočih koncentracij SAA na izločanje IL-6 v nepoškodovanih pljučnih fibroblastih

Merjeno z IL-6 ELISA v supernatantih. NHLF p3 so bili izpostavljeni 5 nM EGF, 500 nM HC, 50 nM, 500 nM in 1000 nM SAA; (B – kontrola ozadja brez dodanih učinkovin, EGF - epidermalni rastni faktor, HC – hidrokortizon, SAA – serumski amiloid A)

Rezultati QPCR sovpadajo z rezultati ELISA, SAA je zvišal ekspresijo IL-6 tudi na nivoju mRNA (Slika 3).
Slika 3: Vpliv kontrol in SAA na mRNA ekspresijo IL-6 v nepoškodovanih pljučnih fibroblastih

Analiza mRNA; NHLF p3 so bili izpostavljeni 5 nM EGF, 500 nM HC, 1000 nM SAA; (B - kontrola ozadja brez dodanih učinkovin; EGF – epidermalni rastni faktor, HC – hidrokortizon, SAA – serumski amiloid A, NHLF; p3 – normalni humani pljučni fibroblasti, tretja pasaža)

5.1.1 Vpliv SAA na pljučne fibroblaste po stimulaciji s kolhicinom

Nivoji IL-6 so bili povišani pri samem SAA in pri kombinaciji SAA s kolhicinom tako na proteinskem (Slika 4), kakor tudi na mRNA nivoju (Slika 5). Koncentracija izločenega proteina IL-6 je bila najvišja pri samem SAA.

Slika 4: Vpliv kolhicina, SAA in kombinacij kolhicina s SAA na izločanje IL-6 v nepoškodovanih pljučnih fibroblastih
Merjeno z IL-6 ELISA v supernatantih. NHLF p3 so bili izpostavljeni 5 nM EGF, 500 nM HC, 100 in 300 nM KOL, 500 in 1000 nM SAA; (B - kontrola ozadja brez dodanih učinkovin, EGF – epidermalni rastni faktor, HC – hidrokortizon, KOL – kolhicin, SAA - serumski amiloid A, NHLF p3 – normalni humani pljučni fibroblasti, tretja pasaža)

Slika 5: Vpliv SAA in SAA v kombinaciji s kolhicinom na ekspresijo IL-6 v nepoškodovanih pljučnih fibroblastih

5.1.2 Vpliv SAA v kombinaciji z EGF/ hidrokortizonom na pljučne fibroblaste in vpliv SAA na ekspresijo različnih genov
EGF je rahlo povišal izločanje IL-6, EGF v kombinaciji s SAA je deloval sinergistično in močno povišal izločanje IL-6. Sam hidrokortizon ni imel vpliva na izločanje IL-6, skupaj s SAA se je izločanje IL-6 povišalo, vendar manj kot pri samem SAA (Slika 6).
Slika 6: Vpliv SAA v kombinaciji z EGF/HC na izločanje IL-6 v nepoškodovanih pljučnih fibroblastih
Nivoji IL-6, izločeni iz NHLF p3 po izpostavitvi 5 nM EGF, 200 nM HC, 500 in 1000 nM SAA, so bili izmerjeni z ELISA; (B – kontrola ozadja brez dodanih učinkov in, EGF – epidermalni rastni faktor, HC – hidrokortizon, SAA – serumski amiloid A, NHLF p3 – normalni human pljučni fibroblasti, tretja pasaža)
EGF in SAA sta posamično povečala ekspresijo IL-6 nad ozadjem, kombinacija EGF in SAA je sinergistično povečala mRNA ekspresijo IL-6 (Slika 7).

Slika 7: Vpliv SAA v kombinaciji z EGF na ekspresijo IL-6 v nepoškodovanih pljučnih fibroblastih
Analiza mRNA; NHLF p3, 5 nM EGF, 500 nM HC, 1000 nM SAA, (B – kontrola ozadja brez dodanih učinkov in, EGF – epidermalni rastni faktor, HC – hidrokortizon, KOL –
Ko smo testirali NHLF za ekspresijo genov s StellARray (Slika 8), ni bila zaznana ekspresija gena SH Genomic, kar pomeni, da v vzorcih ni bilo genomske DNA. SAA je povišal ekspresijo gena za IL-6 in zelo močno povišal ekspresijo gena za IL-8 (Slika 8, stolpec 6). Povišane so bile tudi ekspresije genov za MMP-1, MMP-12 in PAI-1. Ekspresija genov za IL-1β, MMP-9, COL1A2, COL1A1 in SERPINH1 je bila ob dodatku SAA znižana.

Slika 8: Ekspresija genov za določene citokine, kemokine, rastne faktorje, encime in kolagen s StellARray ob prisotnosti 1000 nM SAA

(B - kontrola ozadja brez dodanih učinkov, SAA - serumski amiloid A, GAPDH – glicerodehid 3-fosfat dehidrogenaza, GS genomic – humana genomska DNA, CTGF - rastni faktor vezivnega tkiva, IL – interlevkin, MMP - matriks metaloproteinaza, COL1A2 - kolagen tipa 2, alfa 2, COL1A2 - kolagen tipa 1, alfa 1, SERPINH1 - serpin peptidazni inhibitor, »clade« H, PAI-1 - inhibitor peptidaznega aktivatorja 1)
5.2 MODEL CELJENJA RAN V CELIČNI KULTURI PLJUČNIH FIBROBLASTOV

Celice so po 24 h inkubaciji rasle v prostor poškodbe in so jo, odvisno od učinkovin dodanih v gojišče, različno gosto zarasle. NHLF so se izkazali kot močno regenerativne celice, saj so prostor poškodbe v veliki meri zarasli tudi pri kontrolni ozadju.

5.2.1 Vpliv EGF na poškodovane pljučne fibroblaste

Celice so zapолнile prostor poškodbe primerljivo s kontrolo ozadja, procent zapолнitev poškodbe se tudi v naraščajočih koncentracijah EGF ni bistveno povišal v primerjavi s kontrolno ozadjo (Slika 9, Slika 10).

![Slika 9: Mikrografi pljučnih fibroblastov pred in po 24 h inkubaciji v odsotnosti/prisotnosti EGF](image)

A – kontrola ozadja brez dodanih učinkovin takoj po poškodbi, B – kontrola ozadja brez dodanih učinkovin po 24 h inkubaciji, C – NHLF izpostavljene 5 nM EGF, fotografirane takoj po poškodbi, D – NHLF izpostavljene 5 nM EGF, fotografirane po 24 h (EGF – epidermalni rastni faktor, NHLF – normalni human pljučni fibroblasti)
Obdelava mikrografov z Nikon NIS ELEMENTS D; NHLF p3, 2,5 nM, 5 nM, 10 nM, 15 nM, 30 nM EGF; (B - kontrola ozadja brez dodanih učinkovin, EGF - epidermalni rastni faktor, NHLF p3 – normalni humani pljučni fibroblasti, tretja pasaža)

Število celic je bilo ob dodatku EGF višje kot pri kontroli ozadja, z naraščanjem koncentracije (2,5 nM – 30 nM) EGF je naraščalo tudi število celic. Viabilnost pritrjenih celic je bila po dodatku EGF primerljiva viabilnosti celic kontrole ozadja (Slika 11).

Slika 10: Zapolnitev poškodbe v prisotnosti naraščajočih koncentracij EGF

Slika 11: Koncentracijski vpliv EGF na število in viabilnost pritrjenih poškodovanih pljučnih fibroblastov

Število in viabilnost pritrjenih celic sta bili določeni z aparatom Countess, NHLF p3, 2,5 nM, 5 nM, 10 nM, 15 nM in 30 nM EGF; (B – kontrola ozadja brez dodanih učinkovin, EGF - epidermalni rastni faktor, NHLF p3 – normalni humani pljučni fibroblasti, tretja pasaža)
5.2.2 Vpliv SAA na poškodovane pljučne fibroblaste
Celice so po 24 h inkubaciji ob dodatku SAA (Slika 12, D in F) poškodbo zarasle primerljivo kontroli ozadja brez dodanih učinkovin (Slika 12, B).

Slika 12: Mikrografi pljučnih fibroblastov pred in po 24 h inkubaciji v odsotnosti/prisotnosti SAA
A - mikrograf kontrole ozadja brez dodanih učinkovin takoj po poškodbi, B – mikrograf kontrole ozadja brez dodanih učinkovin po 24 h inkubaciji, C - mikrograf NHLF izpostavljenih 500 nM SAA takoj po poškodbi, D – mikrograf NHLF izpostavljenih 500 nM SAA po 24 h inkubaciji, E - mikrograf NHLF izpostavljenih 1000 nM SAA takoj po poškodbi, F - mikrograf NHLF izpostavljenih 1000 nM SAA po 24 h inkubaciji. (B -
kontrola ozadja brez dodanih učinkovin, SAA - serumski amiloid A, NHLF – normalni
humani pljučni fibroblasti)

Celice so poškodbo močno zarasle že pri kontroli ozadja brez dodanih učinkovin. Pri
koncentracijah 1 nM, 10 nM in 100 nM SAA je bil procent zapolnitve rane nižji kot pri
kontroli ozadja, pri koncentraciji 500 nM rahlo višji in pri 1000 nM SAA spet rahlo nižji
(Slika 13).

Slika 13: Zapolnitev poškodbe v prisotnosti naraščajočih koncentracij SAA

Obdelava mikrografov z Nikon NIS ELEMENTS D; NHLF p3, 10 nM EGF, 200 nM HC,
1 nM, 10 nM, 100 nM, 500 nM in 1000 nM SAA; *(B - kontrola ozadja brez dodanih
učinkovin, EGF - epidermalni rastni faktor, HC - hidrokortizon, SAA - serumski
amiloid A, NHLF p3 – normalni humani pljučni fibroblasti, tretja pasaža)*

Število celic je naraščalo z naraščajočimi koncentracijami do 500 nM SAA (1 nM, 10 nM,
100 nM in 500 nM), pri 1000 nM koncentraciji pa se je število celic znižalo. Viabilnost
pritrjenih celic je bila primerljiva kontroli ozadja brez dodanih učinkovin (Slika 14).
Slika 14: Koncentracijski vpliv SAA na število in viabilnost pritrjenih poškodovanih pljučnih fibroblastov
Število in viabilnost pritrjenih celic sta bili določeni z aparatom Countess, NHLF p3; 10 nM EGF, 1 nM, 10 nM, 100 nM, 500 nM, 1000 nM in 5000 nM SAA; (B - kontrola ozadja brez dodanih učinkov, EGF - epidermalni rastni faktor, SAA - serumski amiloid A, NHLF p3 – normalni human pljučni fibroblasti, tretja pasaža)

5.2.3 Vpliv kolhicina na poškodovane pljučne fibroblaste
Kolhicin je poškodoval celice in zaviral rast celic v prostor poškodbe. Pri 100 nM koncentraciji so celice poškodbo še delno zarasle (Slika 15, D), a mnogo slabše kot pri kontroli ozadja (Slika 15, B). Pri 300 nM koncentraciji kolhicina celice poškodbe niso več zarasle (Slika 15, F), vidne so bile tudi mnoge mrtve celice, odlepljene od podlage.
Slika 15: Mikrografi pljučnih fibroblastov pred in po 24 h inkubaciji v odsotnosti/prisotnosti kolhicina

A - mikrograf kontrole ozadja brez dodanih učinkovin takoj po poškodbi, B – mikrograf kontrole ozadja brez dodanih učinkovin po 24 h inkubaciji, C - mikrograf NHLF izpostavljenih 100 nM KOL takoj po poškodbi, D - mikrograf NHLF izpostavljenih 100 nM KOL po 24 h inkubaciji, E - mikrograf NHLF izpostavljenih 300 nM KOL takoj po poškodbi, F - mikrograf NHLF izpostavljenih 300 nM KOL po 24 h inkubaciji; (B – kontrola ozadja brez dodanih učinkovin, KOL – kolhicin, NHLF – normalni humani pljučni fibroblasti)

Procent zapolnitve poškodbe je že pri najnižji koncentraciji kolhicina (0,3 nM) nižji od kontrole ozadja brez dodanih učinkovin in pada z naraščanjem koncentracije kolhicina (Slika 16).

Slika 16: Zapolnitetv poškodbe v prisotnosti naraščajočih koncentracij kolhicina

Obdelava mikrografov z Nikon NIS ELEMENTS D; NHLF p3, 0.3 nM, 3 nM, 30 nM, 100 nM in 300 nM KOL; (B – kontrola ozadja brez dodanih učinkovin, KOL – kolhicin, NHLF p3 – normalni humani pljučni fibroblasti, tretja pasaža)

Število celic pada z naraščanjem koncentracije kolhicina. Viabilnost pritrjenih celic je primerljiva kontroli ozadja, a z naraščanjem koncentracije kolhicina rahlo pada. Kolhicin v odvisnosti od koncentracije inhibira število celic in njihovo rast v prostor poškodbe (Slika 17).
Slika 17: Koncentracijski vpliv kolhicina na število in viabilnost pritrjenih poškodovanih pljučnih fibroblastov

Število in viabilnost pritrjenih celic sta bili določeni z aparatom Countess; NHLF p3; 0,3 nM, 3 nM, 30 nM, 100 nM in 300 nM KOL (B – kontrola ozadja brez dodanih učinkovin, KOL - kolhicin, NHLF p3 – normalni humani pljučni fibroblasti, tretja pasaža)

5.2.4 Vpliv SAA na poškodovane pljučne fibroblaste po stimulaciji s kolhicinom

Da bi dobili vpogled vpliva SAA na inhibicijo rasti celic v prostor poškodbe v prisotnosti kolhicina, smo celice izpostavili obema učinkovi nama. Celice so poškodbo zarasle hitreje v prisotnosti SAA in kolhicina (Slika 18, D) kot pri samem kolhicinu (Slika 18, B). Enak trend smo zasledili tako pri 100 nM (Slika 18, A – D) kot tudi pri 300 nM koncentraciji kolhicina (Slika 18, E – H). Celice poškodbe v prisotnosti 300 nM koncentracije kolhicina niso več zarasle (Slika 18, F), po dodatku SAA k NHLF, ki so bili predhodno izpostavljeni 300 nM koncentraciji kolhicina, se je poškodba delno zarasla (Slika 18, H).
Slika 18: Mikrografi pljučnih fibroblastov predhodno izpostavljeni kolhicinu, pred in po 24 h inkubaciji v odsotnosti/prisotnosti SAA
A – NHLF z dodanim 100 nM KOL, fotografirani pred inkubacijo, B – NHLF z dodanim 100 nM KOL, fotografirani po 24 h inkubaciji, C – NHLF z dodano kombinacijo 100 nM KOL + 500 nM SAA, fotografirani pred inkubacijo, D - NHLF z dodano kombinacijo 100
nM KOL + 500 nM SAA, fotografirani po 24 h inkubaciji, E - NHLF z dodanim 300 nM KOL, fotografirani pred inkubacijo, F - NHLF z dodanim 300 nM KOL, fotografirani po 24 h inkubaciji, G - NHLF z dodano kombinacijo 300 nM KOL + 1000 nM SAA, fotografirani pred inkubacijo, H - NHLF z dodano kombinacijo 300 nM KOL + 1000 nM SAA, fotografirani po 24 h inkubaciji; (KOL – kolhicin, SAA – serumski amiloid A, NHLF – normalni humani pljučni fibroblasti)

Prostor poškodbe se zapolni hitreje pri vseh kombinacijah kolhicina in SAA v primerjavi z enakimi koncentracijami kolhicina v odsotnosti SAA (Slika 19). Največje spremembe smo zaznali pri 100 nM koncentraciji kolhicina s 500 nM koncentracijo SAA, 100 nM koncentracije kolhicina s 1000 nM koncentracijo SAA in pri 300 nM koncentraciji kolhicina s 1000 nM koncentracijo SAA (Slika 19, stolpeci 4, 5, 6). Pri vseh omenjenih kombinacijah kolhicina s SAA se je prostor poškodbe zarasel vsaj 30% bolj učinkovito kot le v prisotnosti samega kolhicina (Slika 19).

Slika 19: Primerjava zapolnitve poškodbe po izpostavitvi KOL in kombinacijam KOL + SAA

Slika 19: Primerjava zapolnitve poškodbe po izpostavitvi pljučnih fibroblastov kolhicina in kombinacijam kolhicina s SAA
Obdelava mikrografov z Nikon NIS ELEMENTS D; NHLF p3, 30 nM, 100 nM in 300 nM KOL, 500 nM in 1000 nM SAA; (B - kontrola ozadja brez dodanih učinkovin, KOL – kolhicin, SAA – serumski amiloid A, NHLF p3 – normalni humani pljučni fibroblasti, tretja pasaža)

Število celic je bilo tako pri kolhicinu kot pri kombinaciji kolhicina s SAA nižje od kontrole ozadja. Število celic je bilo pri vseh kombinacijah kolhicina s SAA večje vsaj za 20% v primerjavi z enakimi koncentracijami samega kolhicina (Slika 20). Največjo razliko, ki je znašala kar 35%, smo zaznali pri 300 nM koncentraciji kolhicina s 1000 nM koncentracijo SAA v primerjavi s 300 nM koncentracijo samega kolhicina (Slika 20, stolpec 6)

![Primerjava števila celic po izpostavitvi KOL in kombinacijam KOL + SAA](image)

Slika 20: Primerjava števila celic po izpostavitvi kolhicinu in kombinacijam kolhicina s SAA

Število celic je bilo določeno z aparatom Countess; NHLF p3; 30 nM, 100 nM in 300 nM KOL, 500 nM in 1000 nM SAA; (B - kontrola ozadja brez dodanih učinkovin, KOL – kolhicin, NHLF p3 – normalni humani pljučni fibroblasti, tretja pasaža)

Viabilnost je bila tako kot število celic pri vseh izpostavitvah kolhicinu in kolhicina s SAA nižja od kontrole ozadja. Viabilnost pritrjenih celic izpostavljenih le kolhicinu je bila
primerljiva viabilnosti pritrjenih celic izpostavljenih kombinacijam kolhicina s SAA (Slika 21).

Slika 21: Primerjava viabilnosti po izpostavitvi kolhicinu in kombinacijam kolhicina s SAA
Viabilnost celic je bila določena z aparatom Countess; NHLF p3; 30 nM, 100 nM in 300 nM KOL, 500 nM in 1000 nM SAA; (B - kontrola ozadja brez dodanih učinkovin, KOL - kolhicin, NHLF p3 – normalni humani pljučni fibroblasti, tretja pasaža)

5.3 STELLARRAY – PRIMERJAVA NEPOŠKODOVANIH / POŠKODOVANIH PLJUČNIH FIBROBLASTOV V PRISOTNOSTI ALI ODSOTNOSTI SAA
SAA zviša ekspresijo gena za IL-6 pri nepoškodovanih NHLF, pri poškodovanih celicah pa je ekspresija še višja. Prav tako SAA močno poviša ekspresijo gena za IL-8 pri nepoškodovanih, še bolj pa pri poškodovanih celicah. Ekspresiji genov za CTGF in IL-1β sta ob poškodbi celic in dodatku SAA minimalni. SAA je povišal ekspresijo gena za MMP-1 pri nepoškodovanih celicah bolj kot pri poškodovanih celicah. Ekspresijo gena za MMP-12 je SAA povišal podobno pri nepoškodovanih in poškodovanih celicah, vendar pa je bila ekspresija višja pri nepoškodovanih celicah. Ekspresija mRNA MMP-9 je znižana tako pri poškodbi kot pri dodatku SAA. Ekspresijo genov za COL1A2, COL1A1 in
SERPINH1 je zvišala sama poškodba, SAA ni imel vpliva na ekspresijo. Ekspresija gena za PAI-1 je minimalno zvišana tako pri poškodbi kot pri dodatku SAA (Slika 22).

Slika 22: Ekspresija genov za določene citokine, kemokine, rastne faktorje, encime in kolagen določena s StellARray

NHLF p3, 1000 nM SAA; (B - kontrola ozadja brez dodanih učinkovin, SAA - serumski amiloid A, GAPDH - gliceraldheid 3-fosfat dehidrogenaza, GS genomic - humana genomska DNA, CTGF - rastni faktor vezivnega tkiva, IL - interleivkin, MMP - matriks metaloproteinaza, COL1A2 - kolagen tipa 2, alfa 2, COL1A2 - kolagen tipa 1, alfa 1, SERPINH1 - serpin peptidazni inhibitor, »clade« H, PAI-1 - inhibitor peptidaznega aktivatorja 1, NHLF p3 – normalni humani pljučni fibroblasti, tretja pasaža)

5.4 VPLIV SAA NA PLJUČNE FIBROBLASTE PRED IN PO POŠKODBI

5.4.1 Vpliv SAA na pljučne fibroblaste pred in po poškodbi na izločanje IL-6 na proteinskem nivoju

IL-6 se izloča v prisotnosti samega SAA ali v kombinaciji hidrokortizona z EGF. Pljučni fibroblasti izločijo največ IL-6 ob sočasni prisotnosti EGF in SAA (Slika 23, stolpec 3).
Med količino izločenega IL-6 pri poškodovanih/nepoškodovanih celicah ni bistvenih razlik.

Slika 23: Vpliv EGF in hidrokortizona ter njune kombinacije s SAA na izločanje IL-6
IL-6 ELISA supernatantov; NHLF p3, 5 nM EGF, 200 nM HC, 500 nM in 1000 nM SAA;
(B - kontrola ozadja brez dodanih učinkovin, EGF - epidermalni rastni faktor, HC - hidrokortizon, SAA - serumski amiloid A, NHLF p3 – normalni human pljučni fibroblasti, tretja pasaža)

Z naraščanjem koncentracije SAA se povečujejo tudi nivoji izločenega proteina IL-6. Pri 500 nM SAA je izločanje višje pri nepoškodovanih celicah, pri 1000 nM SAA pa je izločanje višje pri poškodovanih celicah, vendar so razlike med poškodovani in nepoškodovani celicami majhne (Slika 24).
IL-6 ELISA supernatantov; NHLF p3, 5 nM EGF, 500 nM HC, 50 nM, 500 nM in 1000 nM SAA; (B – kontrola ozadja brez dodanih učinkov, EGF - epidermalni rastni faktor, HC – hidrokortizon, SAA – serumski amiloid A, NHLF p3 – normalni humani pljučni fibroblasti, tretja pasaža)

IL-6 je bil povišan vedno ob prisotnosti samega SAA ali SAA v kombinaciji s kolhicinom ali EGF. Najvišje povišanje pa smo zaznali ob sočasni prisotnosti EGF in SAA (Slika 25).

Slika 25: Vpliv kombinacij kolhicina s SAA na izločanje IL-6 pri poškodovanih / nepoškodovanih pljučnih fibroblastih

IL-6 ELISA supernatantov; NHLF p3, 5 nM EGF, 500 nM HC, 100 nM in 300 nM KOL, 500 nM in 1000 nM SAA; (B - kontrola ozadja brez dodanih učinkov, EGF – epidermalni rastni faktor, HC – hidrokortizon, KOL – kolhicin, SAA- serumski amiloid A, NHLF p3 – normalni humani pljučni fibroblasti, tretja pasaža)

Po hkratni izpostavitvi NHLF IL-1β in SAA, so se nivoji IL-6 izrazito in sinergistično povečali (Slika 26).
Slika 26: Vpliv kombinacije SAA in IL-1β na izločanje IL-6
IL-ELISA supernatantov; NHLF p3, 5 nM EGF, 200 nM HC, 1000 nM SAA, 100 pg/ml, 500 pg/ml in 1000 pg/ml IL-1β; (B - kontrola ozadja brez dodanih učinkovin, EGF – epidermalni rastni faktor, HC – hidrokortizon, SAA - serumski amiloid A, IL-1β – interleukin 1 beta, NHLF p3 – normalni human pljučni fibroblasti, tretja pasaža)

5.4.2 Vpliv SAA na pljučne fibroblaste pred in po poškodbi na mRNA nivoju s QPCR
Genska ekspresija IL-6 sovpada z rezultati IL-6 ELISA, saj je ekspresija povečana vedno v prisotnosti samega SAA ali SAA v kombinaciji s kholcicinom ali EGF. Razlika v ekspresiji IL-6 med poškodovanimi/nepoškodovanimi celicami je vidna tako v prisotnosti samega SAA kot tudi ob sočasni prisotnosti SAA in EGF (Slika 27-A, stolpca 6 in 7). Sam SAA kot tudi SAA v kombinaciji bodisi z EGF, bodisi s kholcicinom tudi poviša ekspresijo IL-8 (Slika 27-B, stolpci 4, 6 in 7). Razlik v ekspresiji IL-8 med poškodovanimi / nepoškodovanimi celicami ni oz. so minimalne.
Slika 27: Vpliv kolhicina in SAA na ekspresijo IL-6 (A) in IL-8 (B) na mRNA nivoju
Analiza mRNA; NHLF p3, 5 nM EGF, 500 nM HC, 100 nM KOL, 1000 nM SAA, (B - kontrola ozadja brez dodanih učinkovin, EGF – epidermalni rastni faktor, HC – hidrokortizon, KOL – kolhcin, SAA - serumski amiloid A, NHLF p3 – normalni human pljučni fibroblasti, tretja pasaža)
6 RAZPRAVA

SSc je neozdravljiva avtoimunska bolezen, pri kateri je eden glavnih krivcev smrtnosti intersticijska pljučna bolezen, ki se kaže s pljučno fibrozo. Fibroza povzroči strukturne poškodbe pljučnega parenhima in oslabitve dihalnih funkcij. Mnoge raziskave preučujejo možnost prekinitve ali vsaj upočasnitve procesa fibroze. Pri nalogi smo izhajali iz raziskovalnega dela Laboratorija za imunologijo revmatizma, Oddelka za revmatologijo, UKC-Ljubljana, ki se tudi ukvarja s proučevanjem SSc ter pomembnosti SAA pri bolnikih s SSc. Ker povišane vrednosti SAA korelirajo s poslabšanjem pljučnih funkcij, smo želeli preveriti, če in kako SAA vpliva na pljučne fibroblaste na celičnem nivoju.

6.1 VPLIV SAA NA PLJUČNE FIBROBLASTE

SAA je akutno fazni protein, ki je lahko povišan od 1 do 2000-krat med poškodbo ali vnetjem. Ima mnoge funkcije, kot so transport holesterola iz mesta vnetja, metabolizem visokogostotnih lipoproteinov, indukcija vnetnih citokinov, kemotaksa neutrofilcev, indukcija proliferacije fibroblastov in proliferacije regulatornih celic T (10, 12 in 18). Koncentracije SAA so povišane pri boleznih, kot so SSc (11 in 14), revmatoidni artritis, sekundarni antifosfolipidni sindrom, sekundarni sistemski lupus eritematosus (30) ter pri sekundarni amiloidozi (31). SAA je uporabljen kot označevalec mnogih vnetnih kroničnih bolezni (18, 32).

Poleg tega, da je SAA označevalec vnetja, lahko sproži signale za citokine in preko »Toll-u« podobnih receptorjev (Toll-Like Receptors - TLR) spodbuja vnetje. V pacientih s SSc lahko začetna poškodba v žilju povzroči nekrozo celic endotelija. To povzroči sprostitev SAA, ki deluje na sosednje celice in sproži vnetno kaskado in izločanje vnetnih citokinov. Vnetni citokini vodijo do povečanega vnetnega odziva, ki krepi in ohranja fibrozo tkiva (18). O'Reilly in sodelavci (18) so pokazali, da SAA sproži produkcijo IL-6 v zdravih demalnih fibroblastih, primerljivo z našim delom na pljučnih fibroblastih. Prav tako so pokazali, da dermalni fibroblasti izražajo TLR2, ki so funkcionalno in močno izraženi v fibroblastih pacientov s SSc. Blokada TLR2 z nevtralizacijskim protitelesom je znižala SAA inducirano izločanje IL-6. Skupaj ti podatki kažejo, da SAA sproži IL-6 signalizacijo preko TLR2 receptorja pri bolnikih s SSc (18). TLR2 bi lahko bil nova terapevtska tarča zdravlje, kjer bi s terapevtskimi protitelesi prekinili TLR2 delovanje in s tem tudi sproščanje vnetnih citokinov s SAA.
Na miših so z blokado TLR2 pokazali, da je bila zaščitena pred pljučno fibrozo, ki so jo sprožili z bleomicinom (18). Bleomicin je citostatik, ki povzroči prelome DNA in to vodi v apoptozo celic, ko se le-te delijo (33). Glavni stranski učinek bleomicina je pljučna fibroza, zato se na živalskih modelih uporablja za povzročitev pljučne fibroze.

SAA inducira produkcijo IL-6 tudi v sinovijskih fibroblastih bolnikov z revmatoidnim artritisom (18), tako da predvidevamo, da je mehanizem, po katerem deluje SAA, podoben v fibroblastih, pridobljenih iz različnih virov (kože, pljuč ali sinovialne membrane).

Skupno, naši rezultati prvič kažejo, da SAA stimulira pljučne fibroblaste in spodbuja izločanje vnetnega IL-6 na proteinskem nivoju, kakor tudi mRNA ekspresijo.

6.2 VPLIV KOLHICINA NA PLJUČNE FIBROBLASTE, DELOVANJE KOLHICINA V KOMBINACIJI S SAA

Kolhicin je toksin, ki deluje na citoskelet celice. Ta ima v celici mnogo funkcij, kot so pomen pri mitozi, gibanju, znotrajceličnem transportu, komunikaciji med celicami, endo-in eksocitozi. Kolhicin se z veliko afiniteto veže na tubulin in tako zaustavi nastanek mikrotubulov, ki so ključni pri nastanku delitvenega vretena. Delitveno vreteno je odgovorno za potovanje kromosomov med mitozo. Brez delitvenega vretena so faze mitoze inhibirane in celica se ne more deliti. Lakota in sodelavci (13) so pokazali, da je SAA lociran v neposredni bližini mikrotubulov (do 30 nm) in se tako po vsej verjetnosti veže na mikrotubule. Tako so nakazane nove potencialne funkcije SAA tudi znotraj celic. SAA so zaznali tudi v nanocevkah in mikroveziklih, pa tudi v jedru celice, kar nakazuje, da bi SAA lahko imel funkcije tudi tam (13). Pri naših poskusih je sam kolhicin prekinil delitev celic, znižal število celic, ki se niso mogle več zarasti v prostor poškodbe. Pri koncentraciji 300 nM je kolhicin močno poškodoval celice, saj so bile vidne tudi mnoge mrtve celice, odlepljene od podlage. Naši mikrografi kažejo, da so fibroblasti, ki so bili izpostavljeni kolhicinu s SAA, bolj učinkovito zarasli poškodbo kot fibroblasti, ki so bili izpostavljeni le samemu kolhicinu. Enak trend smo zazdali pri dveh različnih koncentracijah kolhicina (100 nM in 300 nM). Ti rezultati so nam odprli vprašanje, ali ima SAA kakšno vlogo pri obnovi mikrotubulov po njihovi okvari s kolhicinom, glede na to, da se SAA povezuje z mikrotubuli. Ker smo opravili le en poskus brez ponovitev, sicer pri različnih koncentracijah kolhicina in/ali SAA, gre le za hipotezo, za potrditev katere bi bilo potrebno narediti več ponovitev poskusa ter nadaljnje raziskave.
Skupaj naši rezultati nakazujejo, da ima izreden pomen tudi mikrokoloe, v katerem je SAA. Po pregledu literature lahko zaključimo, da prvič prikazujemo, da SAA skupaj z IL-1β deluje sinergistično in močno povsada nivo IL-6 v primarnih humanih pljučnih fibroblastih. IL-1β je pomemben mediator vnetnega odziva, prav tako vključen v celično proliferacijo, diferenciacijo in apoptozo. Sinergističen učinek na nivo izločenega IL-6 smo zaznali tudi pri kombinaciji SAA z EGF, tako na mRNA kot na proteinskih nivoju.

6.3 CELIČNI MODEL CELJENJA RAN

Ker fibroza nastane mnogokrat zaradi napak pri celjenju ran, smo se omejili na celjenje ran pri pljučnih fibroblastih, ki smo jih poškodovali in s tem posnemali nastanek fizične rane in vrast celic vanj. Za prizadevanje poškodbe smo izbrali »scratch« protokol, ki je pogosto uporabljen med raziskovalci. Za opazovanje celjenja smo zasledovali morfoške spremembe, število in viabilnost celic ter spremembe na proteinskih in mRNA nivoju. Glede na literaturo in predhodna znanja smo izbrali proteine in gene, pri katerih bi lahko pričakovali spremembe med celjenjem ran.

6.3.1 In vitro »scratch« metoda

Pri naših poskusih smo uporabili zdrave pljučne fibroblaste, ki smo jih poškodovali, izpostavili stimulatorjem/inhibitorjem in inkubirali 24 h. Enako vidno polje smo fotografirali takoj po poškodbi in po 24 h inkubaciji. Rezultati kažejo, da so NHLF regenerativne celice, ki se po 24 h inkubaciji dobro vrastejo v prostor poškodbe tudi pri kontroli ozadja brez dodanih učinkovin. Vnaprej bi lahko celice močneje poškodovali z dodatno poškodbo, npr. z UV svetlobo. Prav tako bi lahko celice fotografirali v časovnih intervalih nekaj ur in skrajšali inkubacijo, saj smo pri naših poskusih verjetno zamudili časovni razpon potreben za zasledovanje sprememb transkripcijskih faktorjev. Naši pogoji so bili prilagojeni za zasledovanje IL-6 ter IL-8.

6.3.2 Morfoške spremembe pljučnih fibroblastov

Morfološke spremembe smo spremljali z opazovanjem celic pod mikroskopom in s pomočjo mikrografov. Razlika v mikrografiht pred in po inkubaciji nam je omogočila podatek o hitrosti zaraščanja prostora poškodbe. Tako smo lahko zaznali spremembe v zaraščanju prostora poškodb glede na učinkovine, ki smo jih dodali v medij. Očitne morfoške spremembe celic so bile vidne po dodajanju kohlicina v gojišče. Z višanjem
koncentracije kolhicina so celice vse manj zarasle prostor poškodbe, vidne so bile tudi mnoge mrtve celice, odlepljene od podlage.

6.3.3 Spremembe na proteinskem nivoju

IL-6 je pleiotropni citokin, ki ga sintetizirajo mnoge različne celice in sodeluje pri nastanku ter vztrajanju različnih bolezni kot sta revmatoidni artritis ali osteoporoza. IL-6 ima vloge pri regulaciji imunskega sistema, diferenciaciji celic T, angiogenezi in formaciji osteoklastov (34). O'Reilly in sodelavci (34) so pokazali, da ima IL-6 ključno vlogo tudi v patogenezi SSc in bolniki s SSc imajo povišane ravni IL-6. Povišana ekspresija IL-6 je bila pokazana v serumu, koži in bronhoalveolarni tekočini pacientov s SSc. Pokazali so, da IL-6 deluje fibrotično, povzroči povečano izražanje kolagena I v dermalnih fibroblastih. V živalskih modelih s srčno fibrozo so blokirali IL-6 signalizacijo in rezultati so pokazali oslabljeno sintezo kolagena I in znižano srčno fibrozo (18). Dokazano je bilo tudi, da IL-6 inducira sintezo kolagena v človeških kitah (34). Pri pacientih s SSc se domneva, da IL-6 pospešuje aktivacijo in proliferacijo fibroblastov, kar vodi do prekomernega nalaganja komponent zunajceličnega matriksa, predvsem kolagenov. Raziskava je pokazala, da stimulation dermalnih fibroblastov s SAA sproža indukcijo IL-6 v teh celicah preko TLR2 receptorja. Primerjali so tudi dermalne fibroblaste bolnikov s SSc z zdravimi dermalnimi fibroblasti. Rezultati so pokazali, da imajo fibroblasti bolnikov s SSc višjo konstitutivno raven IL-6 in so lahko nadalje inducirani s SAA za proizvodnjo IL-6 (18). IL-6 lahko vpliva na fibrozo preko direktne transkripcijske aktivacije kolagena ali z uravnavanjem citokinov. Kljub raziskovanju vpletenosti IL-6 v patogenezo SSc, mehanizmov IL-6 na molekulskem nivoju, ki vodijo do fibroze in katere signalne poti vodijo do nalaganja zunajceličnega matriksa še ne poznamo, zato je vsaka nova informacija lahko zelo pomembna. Vsi ti rezultati kažejo na ključno vlogo IL-6, ki lahko predstavlja novo terapevtsko tarčo v zaviranju fibroze pri SSc (34).

Naši rezultati kažejo, da SAA stimulira izločanje IL-6 v pljučnih fibroblastih. To bi se lahko pomembno navezovalo na podatke pridobljene v študiji Lakota s sodelavci 2014 (11), kjer je bilo ugotovljeno, da višji nivoji SAA korelirajo s poslabšanjem pljučne funkcije pri bolnikih s SSc. Povišane koncentracije IL-6 bi torej lahko delovale fibrotično na pljučne fibroblastke podobno kot delujejo fibrotično na dermalne fibroblastke.
6.3.4 Spremembe na mRNA nivoju

IL-6 je poleg IL-1 in TNF-α glavni citokin, ki sproži prepisovanje genov proteinov akutne faze, kot je SAA. Kako vpliva SAA na mRNA ekspresijo IL-6 v pljučnih fibroblastih do sedaj še ni bilo znano. Naši rezultati kažejo, da SAA spodbudi ekspresijo IL-6, v kombinacijah s kolistinom in EGF pa celo deluje sinergistično. Najvišjo ekspresijo smo zaznali pri kombinaciji SAA z EGF. Pri poškodovanih celicah je bila po dodatku SAA ekspresija IL-6 višja kot pri nepoškodovanih celicah, torej na povišano ekspresijo IL-6 vplivata tako poškodba celic kot SAA.

IL-8 je prometni kemokin, ki pospešuje migracijo neutrofilcev na mesto vnetja. V študiji He in sodelavci so pokazali, da SAA spodbuja hitro in močno izločanje IL-8 v neutrofilcih (19). Ali SAA spodbuja izločanje IL-8 v pljučnih fibroblastih podobno kot v neutrofilcih do sedaj še ni bilo znano. Naši rezultati kažejo, da SAA močno spodbuja ekspresijo IL-8 v pljučnih fibroblastih. Najvišjo ekspresijo smo zaznali pri kombinaciji SAA z EGF.

SAA povzroča tudi ekspresijo genov MMP-12, in PAI-1 vendar v manjši meri kot pri IL-6 in IL-8. Pri genih CRP, IL-17A, IL-27, VCAM-1 nismo zaznali ekspresije (rezultati niso prikazani). Vzrok je lahko, da nismo ujeli časovnega intervala njihove ekspresije ali so naši postopki premalo občutljivi za pridobitev zadostnih količin mRNA, prepisanih v cDNA za kvantifikacijo s QPCR.

S testom StellARray smo dobili kvalitativne podatke o ekspresiji izbranih genov, ki nam je služil kot pregled oz. panel, katere ekspresije genov bi bilo smiselno naprej kvantitativno ovrednotiti. Ker smo test naredili na koncu naloge, nam je služil kot potrditev testov QPCR za izbrane gene ter podal rezultate, da bi izmed izbranih genov bilo smiselno narediti še QPCR za MMP-1, saj tako poškodba kot SAA vplivata na njegovo ekspresijo.

6.4 RAZLIKE MED PLJUČNIMI FIBROBLASTI IZ ZDRAVIH TKIV IN PLJUČNIMI FIBROBLASTI IZ FIBROTIČNIH TKIV

Pljučni fibroblasti iz zdravih tkiv so se izkazali za regenerativne celice, zato se postavlja vprašanje ali se razlikujejo od pljučnih fibroblastov iz fibrotičnih tkiv in v čem. Kaj doprinese k fibrotičnemu stanju, okolje, ali celice same po sebi, ali oboje? Ramos in sodelavci (35) so raziskovali razlike v stopnji rasti in apoptozi med zdravimi pljučnimi fibroblasti in fibroblasti iz pljučnega tkiva bolnikov z idiopatsko pljučno fibrozo. Pokazali so, da je stopnja rasti pljučnih fibroblastov iz bolnikov z idiopatsko pljučno fibrozo značilno nižja kot stopnja rasti zdravih pljučnih fibroblastov. V tem kontekstu so zaznali...
značilno višji procent apoptotičnih celic pri bolnikovih pljučnih fibroblastih v primerjavi z zdravimi pljučnimi fibroblasti. Določali so tudi procent miofibroblastov s pomočjo detekcije alfa-aktina gladkih mišic, ki je značilen le za miofibroblaste in pokazali, da je v vzorcih bolnikov z idiopatsko pljučno fibrozro procent miofibroblastov značilno višji. V pljučnih fibroblastih bolnikov z idiopatsko pljučno fibrozro sta bila povišana tudi mRNA nivoja za kolagen I in TGF-β. Ti rezultati nakazujejo, da imajo pljučni fibroblasti bolnikov z idiopatsko pljučno fibrozro profibrotični sekretorni fenotip z nižjo stopnjo rasti celic in povišano stopnjo spontane apoptoze (35). Moodley in sodelavci (36) so prav tako raziskovali razlike med zdravimi in fibrotičnimi pljučnimi fibroblasti. Preiskovali so učinke citokina IL-6 in IL-11 na proliferacijo in kinetiko celičnega cikla v primarnih humanih pljučnih fibroblastih zdravih preiskovancev in v pljučnih fibroblastih bolnikov z idiopatsko pljučno fibrozro. Pokazali so, da IL-6 zavira proliferacijo zdravih pljučnih fibroblastih, v pljučnih fibroblastih bolnikov z idiopatsko pljučno fibrozro pa deluje mitogeno. IL-11 se je izkazal kot mitogen pri normalnih in fibrotičnih pljučnih fibroblastih. Ti rezultati kažejo na močan dokaz o okvarjenosti signalnih poti citokinov, ki vodijo v spremembe izločanja in tako vpletenost v patogenezo pljučne fibroze (36).

Naše poskuse bi bilo zanimivo ponoviti na pljučnih fibroblastih iz fibrotičnega tkiva pljuč bolnikov s SSc. Glede na dosedanje dokaze o razlikah med zdravimi in fibrotičnimi pljučnimi fibroblasti bi lahko pričakovali, da bi ti počasneje zapолнili rano, če jo sploh bi, in da bi več celic zapadol v apoptozo med poskusi. Model na pljučnih fibroblastih izoliranih iz fibrotičnih pljuč bi še bolje ponazarjal razmere v pljučih bolnika s SSc. Zanimivo bi bilo namreč opazovati učinke SAA na fibrotične pljučne fibroblaste, ali SAA tudi deluje stimulatorno na izločanje IL-6 in v kolikšni meri. Tako bi lahko primerjali, kako se razlikujejo patogeni celični mehanizmi od fizioloških.
7 SKLEPI

V okviru postavitve in optimizacije modela celjenja poškodbe pljučnih fibroblastov in vpliva SAA na pljučne fibroblaste smo ugotovili naslednje:

1. NHLF so regenerativne celice. Prostor poškodbe so v veliki meri zarasle tudi pri kontroli ozadja brez dodanih molekul;
2. SAA je stimuliral pljučne fibroblaste in v odvisnosti od koncentracije povišal ekspresijo in povečal izločanje citokina IL-6;
3. SAA je stimuliral ekspresijo vnetnega kemokina IL-8 ter MMP-12;
4. kolhicin je močno poškodoval celice in prekinil zaraščanje celic v prostor poškodbe. Pri koncentracijah nad 100 nM se poškodba ni več zarasla;
5. na delovanje SAA je močno vplivalo mikrookolje. SAA je v kombinaciji z IL-1β in v kombinaciji z EGF pokazal sinergistični učinek pri izločanju IL-6;
6. SAA lahko do določene mere obnovi s kolhicinom okvarjene pljučne fibroblaste.

Za potrditev vloge SAA v modelu celjenja ran na celičnem nivoju je potrebna še nadaljnja optimizacija modela. SAA ni le označevalc vnetja, ampak bi lahko kot stimulator izločanja IL-6 tudi doprinesel k razvoju fibroze, ki predstavlja enega največjih problemov pri bolnikih s SSc.
8 LITERATURA

7. Clonetics™ Lung Fibroblast Cell Systems, NHLF&DHLF, Lonza Walkersvile 2010; 2

27. IL-6 Human ELISA Kit, Manuals and Protocols, Invitrogen Corporation, Camarillo, CA. 2012; 24: 4.

