UNIVERZA V LJUBLJANI FAKULTETA ZA FARMACIJO

TILEN MAKOVEC

PRIMERJAVA LOKALNIH HITROSTI PELET V WURSTERJEVI IN MODIFICIRANI WURSTERJEVI KOMORI Z METODO DVOJNEGA OSVETLJEVANJA

COMPARISON OF LOCAL PELLET VELOCITIES BETWEEN CONVENTIONAL WURSTER CHAMBER AND SWIRL GENERATOR – EQUIPPED WURSTER CHAMBER WITH METHOD OF DOUBLE EXPOSURE

MAGISTRSKA NALOGA

Ljubljana, 2014

Magistrsko nalogo sem opravljal na Fakulteti za farmacijo pod mentorstvom doc. dr. Roka Dreua, mag. farm.

Zahvala

Zahvaljujem se doc. dr. Roku Dreu, mag. farm. za mentorstvo in strokovno usmerjanje pri magistrski nalogi.

Zahvaljujem se asist. Roku Šibancu, mag. farm. za pomoč pri delu, strokovnem usmerjanju ter nasvete pri nastajanju te magistrske naloge. Za večkratno pomoč pri menjavi komor hvala tudi dr. Matevžu Luštriku, mag. farm., Jasni Rus za spodbudo in pomoč pri urejanju naloge, Mateju Žnidariču za pomoč pri uporabi programa Photoshop in družini za spodbudo.

Izjava

Izjavljam, da sem magistrsko nalogo izdelal samostojno pod mentorstvom doc. dr. Roka Dreua, mag. farm.

Tilen Makovec

Ljubljana, april 2014

Predsednica komisije: prof. dr. Marija Sollner Dolenc, mag. farm.

Član komisije: doc. dr. Robert Roškar, mag. farm.

KAZALO

KAZALOI
POVZETEK III
ABSTRACTIV
SEZNAM OKRAJŠAVV
1 UVOD
1.1 PELETE
1.1.1 DEFINICIJA IN LASTNOSTI
1.1.2 IZDELAVA PELET
1.1.3 JEDRA ZA OBLAGANJE
1.1.4 TIPI OBLOG IN POLIMERI KI JIH TVORIJO
1.2 KOMORE ZA OBLAGANJE
1.2.1 RAZPRŠEVANJE OD SPODAJ6
1.2.2 WURSTERJEVA PROCESNA KOMORA Z GENERATORJEM VRTINČENJA
1.3 METODE DOLOČANJA HITROSTI DELCEV9
1.3.1 SLEDENJE MAGNETNO OZNAČENIH DELCEV9
1.3.2 DOPPLERJEVA ANEMOMETRIJA 10
1.3.3 POZITRONSKO EMISIJSKO SLEDENJE DELCEV
1.3.4 NAVZKRIŽNA KORELACIJA IN PIV (PARTICLE IMAGE
VELOCIMETRY)
2 NAMEN DELA16
3 MATERIALI IN METODE
3.1 CELLETS®
3.2 PRIPRAVA FRAKCIJ PELET

3.3 POGOJ	JI MERITEV	
3.4 ZAJEM	1 SLIK	
3.5 OBDEI	LAVA SLIK	
4 REZULTA	TI IN RAZPRAVA	
4.1 PREDS	STAVITEV REZULTATOV IN PRIMERI	
4.2 PONOV	VLJIVOST	
4.2.1 PO	NOVLJIVOST ZNOTRAJ SERIJE MERITEV	
4.2.2 PO	NOVLJIVOST MED SERIJAMI MERITEV	
4.3 VPLIV	PRETOKA ZRAKA ZA FLUDIZACIJO NA LOKALN	E HITROSTI
PELET		
4.4 VPLIV	RAZMIKA NA LOKALNE HITROSTI PELET	
4.5 VPLIV	VELIKOSTI PELET NA LOKALNE HITROSTI PELET	50
4.6 KOTI I	LETA PELET	55
5 SKLEP		
6 LITERATU	JRA	
PRILOGA		63
ZBIRNE PRE	GLEDNICE – KASIČNA WURSTERJEVA KOMORA	63
ZBIRNE PRE	GLEDNICE – SWIRL KOMORA	
Opis izvedbe kritičnega pri	E Levenovega testa z uporabo povprečne vrednosti in n eno-faktorski ANOVI	nodifikacije F 73
Opis izpisa dv	70-faktorske ANOVE	75
Opis izvedbe kritičnega pri	Levenovega testa z uporabo povprečne vrednosti in r dvo-faktorski ANOVI	nodifikacije F 77
PREGLEDNI	CE - ANOVA	80
PREGLEDNI	CE - KOTI	

POVZETEK

Pelete so okrogli ali skoraj okrogli delci z gladko površino, velikosti od 0,5 - 1,5 mm. Pogosto se jih obloži z različnimi oblogami za doseganje želenih profilov sproščanja. Za oblaganje se najpogosteje uporablja tehnologija z vrtinčenjem, ki se izvaja s pomočjo različnih komor za oblaganje. Namen naloge je bilo boljše razumevanje obnašanja pelet v komori med samim procesom oblaganja, ob spreminjanju procesnih in geometrijskih pogojev. Osredotočili smo se na spreminjanje lokalnih hitrosti pelet v odvisnosti od pretoka zraka za fludizacijo, višine razmejitvenega valja od dna komore (razmik), velikosti pelet in položaja od roba razmejitvenega valja, pri komori za razprševanje od spodaj (Wursterjeva komora) in njeni izpeljanki: Wursterjeva procesna komora z generatorjem vrtinčenja (swirl komora).

S pomočjo zajema slik med procesom oblaganja z metodo dvojnega osvetljevanja in navzkrižne korelacije smo določili lokalne hitrosti in kote leta pelet. Ustreznost metode za naše meritve smo dokazali z vidika ponovljivosti znotraj serije meritev, kot tudi z vidika ponovljivosti med serijami meritev. Vplive spremenljivk na lokalne hitrosti pelet smo ovrednotili statistično s pomočjo dvo-faktorske analize variance.

Za klasično Wursterjevo komoro velja, večji kot je pretok zraka za fludizacijo in manjši, kot je razmik, večje so lokalne hitrosti pelet. Pri manjših razmikih velja odvisnost, manjše kot so pelete, večje so lokalne hitrosti pelet, pri večjih razmikih pa velikost pelet nima vpliva na hitrosti pelet. Za swirl komoro ravno tako velja odvisnost, večji pretok zraka za fludizacijo - večje lokalne hitrosti pelet. Hitrosti pelet so pri manjšem razmiku večje ali enake kot pri večjem razmiku. Pri večjih razmikih srednji velikostni razred pelet (900 - 1000 μm) dosega največje hitrosti, pri manjših razmikih pa ni razlik v lokalnih hitrostih pelet med različnimi velikostmi le teh. Swirl komora je manj občutljiva na spreminjanje pogojev kot klasična Wursterjeva komora. Razpon hitrosti pri swirl komori je od 1168 mm/s do 2042 mm/s, pri klasični Wursterjevi komori pa od 760,7 mm/s do 2638 mm/s. S pomikanjem od roba razmejitvenega valja proti notranjosti hitrost pelet raste pri obeh komorah. Hitrosti pelet so večje pri klasični Wursterjevi komori, vendar zgolj pri manjših razmikih. Koti leta pelet so večji pri swirl komori in vedno enako orientirani.

Ključne besede: pelete, lokalne hitrosti, Wursterjeva komora, vpliv spremenljivk, metoda dvojnega osvetljevanja

ABSTRACT

Pellets are spherical or almost spherical particles with smooth surface in size range from 0,5 mm to 1,5 mm. In order to reach certain release profiles they are often coated with different coatings. Most commonly used coating method is fluidized bed technology, which is performed with the help of different coating chambers. Aim of the thesis was to understand better how pellets behave when we change the conditions in a Wurster coating chamber during the coating process. We have concentrated on velocity of pellets in relation to fludizing air flow rate, partition column height from the bottom of the chamber (partition gap or simply gap), pellet size and to the position from the edge of the partition column. We have studied these influences in a bottom spray chamber (Wurster chamber) and in its variant swirl generator-equipped Wurster chamber (swirl chamber).

Velocity and angles of pellets' flight were determined with the double exposure method and cross correlation approach. We proved the appropriateness of this method with repeatability within and between the series of measurements. Effects of different variables on velocity of pellets were statistically evaluated by using two-way analysis of variance.

For a conventional Wurster chamber applies a relationship that the bigger the air flow rate is and the smaller the partition gap, the higher is the velocity of pellets. When the gaps are smaller, the smaller the pellets are, the higher is the pellets' velocity, while in case when the gaps are bigger, the pellets size does not influence the velocity. In a swirl chamber – bigger air flow rate causes higher velocity of pellets. Pellets' velocities are at smaller partition gap higher or same as in case of bigger gap. At bigger partition gaps the middle - sized pellets (900 - 1000 μ m) reach highest velocities, while at smaller gaps there are no changes among the velocities of different - sized pellets. A swirl chamber is less sensitive to conditions changes than a conventional Wurster chamber. The velocity in a swirl chamber ranges from 1168 mm/s to 2042 mm/s, while in a Wurster chamber it ranges from 760,7 mm/s to 2638 mm/s. Pellets' velocities get higher as we move from the partition column's edge towards its center, which applies for both chambers. Pellets' velocities are higher in the conventional Wurster chamber, but only when the partition gaps are small. Angles under which the pellets fly are bigger in a swirl chamber and have always the same orientation.

Key words: pellets, velocity, Wurster chamber, variables' effects, double exposure method

SEZNAM OKRAJŠAV

AMR senzor	Anisotropic magnetic resistive sensor; Anizotropni magnetni senzor										
	s spremenljivo upornostjo										
ANOVA	Analysis of variance; Analiza variance										
CW	Classic Wurster chamber; Wursterjeva komora										
GIT	Gastrointestinalni trakt										
NSAID	Non-steroidal anti-inflammatory drug; Nesteroidni antirevmatiki										
PEPT	Positron emission particle tracking; Pozitronsko emisijsko sledenje delcev										
PIV	Particle image velocimetry; Merjenje hitrosti delcev s slikovno metodo										
PP	Porazdelitvena plošča										
RSD	Relative standard deviation; Relativni standardni odklon										
RV	Razmejitveni valj										
SD	Standard deviation; Standardni odklon										
SFV	<i>Spatial filtering velocimetry</i> ; Merjenje hitrosti s pomočjo prostorskega filtra										
SW	Swirl chamber; Swirl komora										
ZU	Zdravilna učinkovina										
3D	Tridimenzionalno										

1 UVOD

1.1 PELETE

1.1.1 DEFINICIJA IN LASTNOSTI

Pelete v splošnem označujejo geometrijsko definirane aglomerate, pridobljene iz različnih materialov in s pomočjo različnih tehnologij izdelave. Gre za okrogle ali skoraj okrogle delce z gladko površino, velikosti od 0,5 mm do 1,5 mm. Prištevamo jih med večenotne farmacevtske oblike. Pelete imajo določene tehnološke pozitivne lastnosti, kot so majhna površinska poroznost, ozka porazdelitev velikosti, dobre pretočne lastnosti ter relativno velika mehanska trdnost. To omogoča nadaljnjo obdelavo, kot je oblaganje, polnjenje (v kapsule) ali stiskanje (v tablete) (1,2,3).

Biofarmacevtske in tehnološke prednosti pelet (1,3):

- zmanjšanje časovnega in koncentracijskega nihanja plazemskih koncentracij ZU zaradi prostega dispergiranja pelet v GIT,
- zmanjšanje variabilnosti prehoda pelet skozi želodec, zaradi velikosti,
- manj stranskih učinkov zaradi manjšega nihanja plazemskih koncentracij,
- manjše lokalno draženje sluznice zaradi boljše porazdelitve vzdolž GIT,
- želen profil sproščanja lahko dosežemo s kombinacijo različnih pelet v eni sami obliki,
- možnost ločbe inkompatibilnih ZU,
- primernost za filmsko oblaganje zaradi gladke površine in ozke distribucije velikosti,
- zmanjšana higroskopnost.

Tehnološke slabosti pelet (1,3):

- proizvodnja zahtevnejša, daljša, dražja v primerjavi z zrnci, tabletami,
- potencialni problem homogenosti in ponovljivosti znotraj, kot tudi med serijami,
- problem razslojevanja pri polnjenju (v kapsule),
- kontrola produkcijskega procesa je težka.

1.1.2 IZDELAVA PELET

Pelete se izdeluje s pomočjo različnih tehnologij, katere lahko v grobem razdelimo na osnovi osnovnega principa izdelave na dve skupini. In sicer, na pelete izdelane z razgrajevanjem, kjer gre za oblikovanje posameznih komponent v plastično maso, ki jo nato najprej oblikujemo v cilindrične delce ter naprej v kroglice. V to skupino sodi tehnologija iztiskanja in krogličenja, ki je zaradi enostavnosti in hitrosti izdelave tudi najpogosteje uporabljena. V drugo skupino pa sodijo pelete izdelane z dograjevanjem, kjer je nastanek kroglic posledica združevanja manjših delcev. V tej skupini je termoplastična izdelava pelet s hitro vrtečim mešalnikom, direkta izdelava pelet, peletiranje z oblaganjem, izdelava pelet s krogličenjem v bobnu, aglomeracija z razprševanjem in kriopeletiranje. Pri vseh zgoraj naštetih tehnologijah izdelave, z izjemo peletiranja z oblaganjem, peleta nastane v samem procesu, medtem ko gre pri izdelavi pelet z oblaganjem za nalaganje zdravilne učinkovine na osnovna jedra (jedra za oblaganje), ki so pravzaprav že pelete brez učinkovine. Torej imamo v tem primeru že na začetku peleto, ki jo kasneje dogradimo v končno peleto. Obstajajo tudi drugi načini izdelave pelet, a zgoraj našteti spadajo med pogosteje uporabljene (3,4).

1.1.3 JEDRA ZA OBLAGANJE

Najpogosteje uporabljena jedra za oblaganje so sladkorna jedra in jedra iz mikrokristalne celuloze. Slednje poznamo pod zaščitenim imenom Cellets[®] in so dobavljiva v velikostih med 100 - 1400 μm. Jedra iz mikrokristalne celuloze izkazujejo nekatere bistvene prednosti pred sladkornimi jedri, kot so ožja porazdelitev velikosti, boljša okroglost in manjša krušljivost (preglednica 1). Čim ožja je porazdelitev velikosti pelet, tem bolje je, kajti zmanjša se potencialna segregacija pelet med in po oblaganju, s tem se poveča enakomernost vsebnosti med obloženimi peletami (če so jedra različno velika, bo tudi količina obloge drugačna) in praktično ni variacije v *in vitro* hitrosti raztapljanja. Želimo si tudi čim bolj okrogla (sferična) jedra, ker s tem dosežemo večjo enakomernost vsebnosti (kadar je učinkovina v oblogi) in manj variacij v hitrosti sproščanja pri filmskem oblaganju, saj je s tem površina pelet bolje definirana, kar omogoča bolj točno načrtovanje procesa oblaganja. Poleg tega pa je zaželjeno, da so jedra čim manj krušljiva, kajti v nasprotnem primeru se med procesom oblaganja lahko drobijo in ti odkrušeni delci se lahko vgradijo v oblogo ter s tem vplivajo na profil sproščanja (5).

Analiza	Sladkorna	jedra	Cellets			
Velikost (µm)	212-300	250-425	500-600	100-200	200-355	500-710
Okroglost jeder (C) C= $4\pi A/p^2$ A = površina p = obseg	0,80	0,83	0,90	0,90	0,90	0,95
% krušljivosti (po dodatku steklenih krogel)	0,40	0,34	0,19	0	0	0

Preglednica 1: Primerjava okroglosti in krušljivosti sladkornih jeder in jeder iz mikrokristalne celuloze različnih velikostnih razredov (5,6)

1.1.4 TIPI OBLOG IN POLIMERI KI JIH TVORIJO

Pogosto se pelete po sami izdelavi dodatno obloži. To se lahko naredi z različnimi tipi oblog, ki služijo različnim namenom. V grobem jih lahko razdelimo na obloge s takojšnim sproščanjem, obloge z zakasnjenim sproščanjem in na obloge za dosego podaljšanega sproščanja.

Vodotopne obloge oziroma obloge s takojšnim sproščanjem se uporabljajo zaradi izboljšave videza pelet, prepoznavnosti znamke, zaščite pred mehanskimi poškodbami, prikritja okusa, zaščite pred vlago, zaščite pred svetlobo in zaščite pred kisikom. Pogosteje uporabljeni polimeri za oblaganje pelet s takojšnjim sproščanjem so hidroksipropilmetil celuloza, metilceluloza, Lustre Clear® (kombinacija mikrokristalne celuloze in karagenana), kollicoat IR (graft polimer polivinil alkohola in polietileglikola), eudragit RD (zmes eudragita RL (slika 1) in karboksimetil celuloze), eudragit E (slika 1) in redkeje šelak (5,7).

Obloga z zakasnjenim sproščanjem je obloga, ki preprečuje sproščanje učinkovine iz farmacevtske oblike v želodčnem mediju in omogoča sproščanje v intestinalnih tekočinah. Uporabljamo jo za v kislem nestabilne ZU (npr. azoli), ZU občutljive na encimsko razgradnjo (npr. proteini), za ZU, ki dražijo želodčno sluznico (npr. NSAID-i) in za ZU, za katere želimo, da delujejo šele v tankem črevesju ali kolonu (npr. salicilati). Za gastrorezistentne obloge velja, da se ne smejo raztapljati pri pH pod 4 in se morajo nujno raztopiti pri pH nad 7. Med gastrorezistentne obloge uvrščamo nekatere celulozne estre,

kopolimere metakrilne kisline in polivinil acetat ftalat. Med celulozne estre uvrščamo hidroksipropilmetil celulozni ftalat, celulozni acetat ftalat in hidroksipropilmetil celulozni acetat sukcinat, med kopolimere metakrilne kisline pa eudragit L (slika 1), eudragit S (slika 1), eudragit FS (slika 1) in Kollicoat MAE (kopolimer metakrilne kisline in etilakrilata v razmerju 1:1) (5,7,8).

Obloge za dosego podaljšanega sproščanja se uporabljajo za vzdrževanje terapevtskih koncentracij, zmanjševanje pogostosti odmerjanja, zmanjševanje nihanja plazemskih koncentracij ZU, zmanjšanje uporabljene ZU, dosego večje kompliance, krajši čas oskrbe bolnika, manj nočnih odmerjanj, manjše draženje prebavnega trakta in manj neželenih učinkov. Podaljšano sproščanje se najpogosteje doseže s polimeri, ki so netopni v vodi, katerim dodamo snovi za tvorbo por ali pa z nabrekajočimi polimeri. Med obloge za podaljšano sproščanje uvrščamo etil celulozo, Kollicoat SR 30 D (polivinil acetat), eudragit RL/RS (slika 1) in eudragit NE/NM (slika 1) (5,7,9).

Slika 1: Kemizem eudragitov (prirejeno po 5)

1.2 KOMORE ZA OBLAGANJE

Najpogosteje uporabljena tehnologija oblaganja delcev je oblaganje z razprševanjem, ki se izvaja s pomočjo komor za oblaganje. Oblaganje z razprševanjem je proces, pri katerem delci neprestano prihajajo v kontakt s kapljicami raztopine za oblaganje, obloga pa se tvori s sočasnim sušenjem zaradi vpihavanja segretega zraka. Glavni del komor za oblaganje je sistem za razprševanje tekočine za oblaganje. Tekočina prihaja v komoro skozi šobo, s pomočjo katere se tvorijo kapljice - atomizacija tekočine. Razprševanju sledi prenos kapljic do delcev za oblaganje, adhezija kapljic na delce, tvorba filmske obloge in na koncu še sušenje filma. Razprševanje tekočine poveča njeno površino in posledično le ta hitreje odpari. Poznamo tri osnovne oblike komor za oblaganje in sicer komoro z razprševanjem od zgoraj (slika 2), komoro z razprševanjem s strani oziroma rotorsko komoro (slika 2) in komoro z razprševanjem od spodaj (Wursterjeva komora). Glavna razlika med komorami je v položaju šobe za razprševanje raztopine za oblaganje. Komoro z razprševanjem od zgoraj se najpogosteje uporablja za postopek granuliranja, rotorska komora pa je bolj primerna za granuliranje ali direktno izdelavo pelet s sledečim oblaganjem, najpogosteje uporabljena komora za oblaganje pa je komora z razprševanjem od spodaj (10,11,12,13).

Slika 2: Levo shematski prikaz komore z razprševanjem od zgoraj in desno shematski prikaz rotorske komore (prirejeno po 10,14)

1.2.1 RAZPRŠEVANJE OD SPODAJ

Z razvojem komore z razprševanjem od spodaj (slika 3) se je precej povečalo število trkov med delci in kapljicami za oblaganje in s tem učinkovitost oblaganja, vendar pa zaradi visoke koncentracije mokrih delcev prihaja do aglomeracije. Zato je prišlo do razvoja modifikacije, tako imenovane Wursterjeve komore (slika 3), ki je danes praktično povsem nadomestila klasično komoro z razprševanjem od spodaj. Tipično gibanje delcev v Wursterjevi komori (slika 3) poveča hitrost sušenja delcev in s tem zmanjša verjetnost aglomeracije delcev. Obloge so bolj homogene strukture in bolj gladke.

Pri oblaganju s pomočjo Wursterjeve komore (slika 3) gre za nalaganje obloge na delce hkrati s točno definiranim gibanjem delcev. Za Wursterjevo komoro je značilen razmejitveni valj, pod katerim je centralno nameščena šoba, kjer poteka razprševanje, in perforirana porazdelitvena plošča, skozi katero v komoro vstopa segret zrak za fludizacijo. Takšna sestava omogoča gibanje delcev značilno za Wursterjevo komoro. Ker je šoba za razprševanje potopljena v tok delcev je pot kapljic do delcev bistveno krajša kot pri komori z razprševanjem od zgoraj, kar ima za posledico bolj enakomeren nanos obloge in večji izkoristek oblaganja.

Ker je pri Wursterjevi komori perforiranost porazdelitvene plošče načrtovana tako, da gre večina vpihanega zraka skozi razmejitveni valj (slika 3), posledično zaradi venturijevega efekta posesa delce iz okolice preko reže. Delci nato z vertikalnim pnevmatskim transportom potujejo skozi valj. Tu se tudi obložijo. Venturijev efekt je posledica tlačne razlike v valju oz. pod njim in okolico okoli valja, do katere pride zaradi razlik v lokalni hitrosti zraka. Ko delci zapustijo razmejitveni valj in vstopijo v ekspanzijski del komore se njihova hitrost močno zmanjša, vlaga odpari, zaradi gravitacije se delci ob valju vračajo na prvotno mesto, t.j. z zrakom razrahljano nasutje. Vzorec gibanja se zopet ponovi in tako se obloga dokaj homogeno debeli, zaradi relativno podobnih časov zadrževanja delcev v predelu oblaganja. Procesne in geometrijske spremenljivke pri oblaganju z Wursterjevo komoro so pretok disperzije za oblaganje in tlak razprševanja, temperatura in vlažnost zraka za fudizacijo, volumski pretok zraka za fludizacijo, višina razmejitvenega valja od dna komore in tip perforirane porazdelitvene plošče (10,11,13,14).

Slika 3: Levo shematski prikaz klasične Wursterjeve komore in desno razlika med klasično komoro z razprševanjem od spodaj (1) in klasično Wursterjevo komoro (2) (prirejeno po 11,14)

1.2.2 WURSTERJEVA PROCESNA KOMORA Z GENERATORJEM VRTINČENJA

Wursterjeva procesna komora z generatorjem vrtinčenja oziroma swirl komora (slika 4) se od klasične Wursterjeve komore razlikuje v obliki distribucijske plošče, skozi katero v komoro vstopa ogret zrak. Pri swirl komori gre za ukrivljeno perforirano porazdelitveno ploščo, na katero je nameščen generator vrtinčenja (slika 4), medtem ko je za klasično Wurserjevo komoro značilna ravna perforirana porazdelitvena plošča. Z generatorjem vrtinčenja dosežemo poseben vrtinčast tok zraka, ki omogoči specifično vijačno gibanje delcev znotraj razmejitvenega valja (slika 4).

Venturijev efekt je zaradi oblike gibanja zraka v področju reže manjši pri swirl komori v primerjavi s klasično Wursterjevo komoro, kar ima za posledico manjšo volumsko gostoto in posledično večjo hitrost delcev pri enakih pogojih oblaganja kot v klasični Wursterjevi komori. Obloga je enakomernejša in aglomeracija je manjša. Bilo je ugotovljeno, da večje hitrosti gibanja delcev in manjša številčna gostota zmanjšajo aglomeracijo delcev. Poleg zgoraj naštetih razlik med klasično Wursterjevo komoro in swirl komoro je za swirl komoro značilno tudi hitrejše sušenje delcev, ki je posledica boljšega prenosa toplote, zaradi specifičnega gibanja zraka in delcev (13,15,16).

Slika 4: Shematski prikaz Wursterjeve procesne komore z generatorjem vrtinčenja (prirejeno po 13)

1.3 METODE DOLOČANJA HITROSTI DELCEV

Poznamo različne metode določanja hitrosti delcev, ki se med seboj razlikujejo po ceni eksperimentalne opreme, zahtevnosti izvedbe, principu določanja hitrosti in invazivnosti (poseg v sam sistem, ki ga preučujemo). Mednje spadajo pozitronsko emisijsko sledenje delcev (PEPT), magnetno sledenje delcev, magnetna resonančna tomografija, SFV metoda (»spatial filtering velocimetry«), merjenje hitrosti s pomočjo piezo – električnega kristala, električna kapacitivna tomografija, flourescentno sledenje delcev, Dopplerjeva anemometrija, določevanje hitrosti s pomočjo navzkrižne korelacije in PIV metoda (particle image velocimetry). V nadaljevanju so nekatere podrobneje opisane (17).

1.3.1 SLEDENJE MAGNETNO OZNAČENIH DELCEV

Določanje hitrosti delcev pri tej metodi temelji na kontinuiranem sledenju magnetno označenega delca. Informacijo o položaju delca se pridobi s pomočjo več senzorjev, na različnih položajih, ki spremljajo magnetno polje označenega delca. Tak merilni sistem ima šest prostostnih stopenj in sicer koordinate x, y in z, kota φ in Θ ter magnetni moment. Običajno je magnetni moment poznan in zato govorimo o petih prostostnih stopnjah (slika 5). Prostostna stopnja je neodvisna možnost gibanja telesa in njeno število ustreza številu podatkov, potrebnih za opis lege telesa. Torej potrebujemo vsaj pet senzorjev za določitev položaja magneta, ki se določi s pomočjo merjenja jakosti magnetnega polja. Ta je odvisna od razdalje in orientacije magneta do senzorja. Hitrost delca u se nato določi preko dveh pozicij v dveh časovnih točkah po enačbi *1*:

$$\mathbf{u}_{(n \to n+1)} = \frac{\mathbf{R}_{n+1} - \mathbf{R}_n}{t_{n+1} - t_n} = \frac{\mathbf{s}}{t_{n+1} - t_n}$$
(1)

Kjer je s razlika med dvema pozicijskima vektorjema in t $_{n+1} - t_n$ razlika med časoma, ki pripadata pozicijskima vektorjema. Interval med izbranima meritvama mora biti čim manjši, saj je s tem zmanjšana možnost spremembe hitrosti delca zaradi kakršnega koli razloga (17,18,19). Najpogosteje uporabljena tipa senzorjev sta AMR senzor (anizotropni magnetni senzor s spremenljivo upornostjo) in Hall efekt senzor. Prvi je zgrajen iz tankega nanosa zlitine niklja in železa na polprevodniški silicijevi rezini in izkorišča fizikalni pojav, da se feromagnetnim materialom v prisotnosti tujega zunanjega polja spremeni njihova upornost. Drugi, pa deluje kot pretvornik, kateremu se izhodna napretost spreminja v odvisnosti od zunanjega magnetnega polja (20,21). Glavna prednost metode je, da se

hkrati lahko določi tako položaj, kot tudi orientacijo delca, kar druge metode ne omogočajo. Glavna pomanjkljivost pa je sprememba lastnosti označenega delca, kot je npr. masa in gostota delca, glede na ostale delce. Metodo so raziskovalci uporabili za ugotavljanje dinamike delcev v rotorskih granulacijskih sistemih in sledenje delcem v prizmatični komori za oblaganje (17,18).

Slika 5: Prikaz vseh petih prostostnih stopenj (3 translacije + 2 rotaciji) magnetnega delca (prirejeno po 18)

1.3.2 DOPPLERJEVA ANEMOMETRIJA

Kadar se izvor valovanja premika glede na opazovalca ali obratno pride do spremembe frekvence valovanja. Ta efekt se imenuje Dopplerjev efekt in je lepo viden, ko se vozilo z vključeno sireno približuje in nato oddaljuje opazovalcu. Med približevanjem je frekvenca, ki jo opazovalec sprejme večja od oddane in se v trenutku srečanja izenači z dejansko oddano, nato pa je med oddaljevanjem manjša glede na oddano. Torej, ko se razdalja med opazovalcem in izvorom s časom veča, se frekvenca zmanjšuje in ko se razdalja med opazovalcem in izvorom manjša, se frekvenca povečuje. Enačbi, ki opisujeta Dopplerjev efekt za premikajoči se izvor zvočnega valovanja (enačba 2) in za premikajočega se opazovalca (enačba 3), sta sledeči.

$$f_2 = f_1 v / (v \pm v_s) (2)$$
 $f_2 = f_1 (v \pm v_o) / v (3)$

Kjer je f₂ opazovana (spremenjena frekvenca), f₁ frekvenca, ki jo oddaja izvor, v hitrost zvoka, v_s hitrost premikanja izvora frekvence (- predznak je uporabljen, če se približuje opazovalcu, + predznak pa kadar se oddaljuje od opazovalca) in v_o hitrost premikanja opazovalca (- predznak je uporabljen, če se oddaljuje izvoru, + predznak pa kadar se približuje izvoru) (22).

S pomočjo Dopplerjevega efekta lahko ugotavljamo tudi hitrosti delcev in sicer, ko pride do oddajanja elektromagnetnega valovanja v tok delcev v plinu se določen delež elektromagnetnega valovanja odbije od delcev na detektor. Razlika v frekvencah med oddanimi in odbitimi signali elektromagnetnega valovanja je proporcionalna hitrosti delcev (enačba 4).

 $f_{odb} - f_{odd} = 2 v_d f_{odd} cos \alpha \ / \ c \ (4)$

Kjer je f_{odb} odbita frekvenca, f_{odd} oddana frekvenca, v_d hitrost delca, α kot oddajanja elektromagnetnega valovanja glede na tok delcev in c hitrost elektromagnetnega valovanja. Kot vir elektromagnetnega valovanja se najpogosteje uporablja laser ali pa generator mikrovalov (23).

Hitrost delcev lahko pri laserskem sistemu izmerimo na dva načina in sicer s svetlobnim referenčnim načinom ali z diferencialno Dopplerjevo metodo. Pri prvem načinu se laserska svetloba, razpršena zaradi odboja na delcih skupaj z referenčno svetlobo usmeri skozi odprtino na fotoelektrični detektor, ki zazna razliko med frekvencama oddane in odbite laserske svetlobe. Diferencialna Dopplerjeva metoda pa uporablja dva laserska žarka z različnim kotom oddajanja elektromagnetnega valovanja glede na tok delcev, usmerjena tako, da se na določeni točki znotraj toka delcev sekata. Ko delec preide mesto sekanja žarkov, se laserska svetloba obeh žarkov odbije in dobimo dve različni spremembi frekvence. Razlika med spremembama frekvenc, ki jo zazna fotodetektor je proporcionalna hitrosti delca. Laserski sistem omogoča dobro prostorsko resolucijo z visoko točnostjo, brez kalibracije, ni pa uporaben za gostejše pretoke (primeren za gostote od 0,1% do 0,4% trdnih delcev v plinu). Pri večjih gostotah prihaja do neustreznega razmerja med signalom in šumom.

Kot pri laserski metodi, lahko spremembe frekvenc zaradi gibanja delcev ugotavljamo tudi s pomočjo mikrovalov. Ločimo bistatičen in monostatičen način (slika 6). Pri prvem se uporablja sprejemnik in oddajnik za mikrovalove s pripadajočima antenama, pri drugem pa napravo, ki vključuje tako oddajnik kot sprejemnik. Izolacijo med sprejetimi in oddanimi signali omogoča cirkulator (slika 6) in zato pri monostatičnem načinu potrebujemo zgolj eno anteno. V primerjavi z lasersko metodo, je metoda z mikrovalovi cenejša in enostavnejša, ima pa slabšo prostorsko resolucijo (23).

Slika 6: Shematski prikaz bistatičnega (a) in monostatičnega (b) načina merjenja hitrosti delcev s Dopplerjevo metodo (levo) in shematski prikaz delovanja cirkulatorja (desno) (prirejeno po 23,24)

1.3.3 POZITRONSKO EMISIJSKO SLEDENJE DELCEV

Pri pozitronskem emisijskem sledenju delcev je delec, katerega sledimo v vseh fizikalnih lastnostih enak ostalim delcem, le da je označen z radioizotopom, za katerega je značilen β_+ razpad. Delec se označi tako, da se na njega adsorbira vodo, ki je bila predhodno obsevana v ciklotronu, kjer nastane radioizotop, za katerega je značilen β_+ razpad, najpogosteje ¹⁸F. Tak, označen delec izseva pozitron - to je antidelec elektrona, ki nato interagira z elektronom. Pri tem dobimo dva visokoenergetska fotona - žarka gama, ki se gibljeta v nasprotno smer in imata enako energijo. Ker se za detekcijo žarkov uporabljata dva vzporedna detektorja, se lahko določi premico, na kateri leži naš preiskovani delec (slika 7). Niz takih detekcij (običajno 50-100) v določeni časovni točki omogoča prostorsko določitev s pomočjo triangulacije - način določanja lege preiskovane točke s pomočjo trikotniških pravil in dveh točk z znanima koordinatama (slika 7). Kot končni rezultat dobimo x, y in z koordinate označenega delca, kot funkcijo časa in iz teh podatkov se lahko določi hitrost delca. Prednosti te metode so, da omogoča 3D spremljanje delca znotraj sistema z veliko gostoto delcev in sicer brez posega v sistem in natančno določanje lokacije delca z veliko frekvenco merjenja. Če metodo apliciramo na Wursterjevo komoro, potem ni potrebe po transparentnem razmejitvenem valju. Slabost metode je v tem, da je označen delec uporaben le približno 75 minut, kolikor časa traja radioaktivni razpad in pa visoka cena zaradi eksperimentalne opreme in potrebe po zagotavljanju ustrezne zaščite pred radioaktivnim sevanjem (17,25,26,27,28). Metodo so uporabili za preučevanje obhodnih časov kroženja delcev v Wursterjevi komori, za preučevanje hitrosti delcev v rotirajočih bobnih in za ugotavljanje pretokov delcev v drugih komorah za oblaganje (25,29).

Slika 7: Shematski prikaz določanja hitrosti delcev z PEPT metodo (levo) in shematski prikaz triangulacije (desno) (prirejeno po 25,28)

1.3.4 NAVZKRIŽNA KORELACIJA IN PIV (PARTICLE IMAGE VELOCIMETRY)

Če spremljamo avto od točke prevoza prvega semaforja do točke prevoza drugega semaforja in izmerimo čas potreben za to, ob znani razdalji med semaforjema lahko izračunamo povprečno hitrost avtomobila. To je tudi osnovni princip določevanja hitrosti delcev s pomočjo navzkrižne korelacije (slika 8). Za merjenje hitrosti delcev se uporabita dva enaka senzorja na razdalji L. Signala, ki se tvorita pri prehodu delca nista identična, zato se uporablja korelator, ki zaznava podobnosti med signaloma. Čas prehoda delca t_t med senzorjema je tako pridobljen s pomočjo navzkrižne korelacije teh dveh signalov s pomočjo korelatorja. Hitrost delca v, se nato izračuna preko enačbe *5*:

 $V = L/t_t$ (5)

Za pridobitev signalov se izkorišča različne lastnosti delcev ali pojave ob prehodu delca mimo senzorja. Poznamo kapacitivne, akustične, elektrodinamične, optične in radiometrične senzorje (23).

Slika 8: Shematični prikaz pridobitve hitrosti delca s pomočjo navzkrižne korelacije (prirejeno po 23)

Pridobitev informacije o hitrosti delcev s pomočjo navzkrižne korelacije je značilna tudi za PIV metodo. Metoda temelji na primerjavi dveh slik posnetih v kratkem časovnem razmiku. Iz obeh slik se s pomočjo navzkrižne korelacije določi najverjetnejše premike delcev. Hitrost se nato določi po enačbi *6*:

$$v_p(x,t) = \frac{s_p(x,t)}{M\Delta t}$$

Kjer je S_p premik delca, Δt časovni razmik med slikama in M povečava slike. Glavni prednosti PIV metode sta nizka cena in pridobitev podatkov brez posega v sistem (30). Raziskovalci so metodo uporabili za preučevanje hitrosti delcev in pretokov delcev v komorah za oblaganje, za preučevanje hitrosti pretoka tekočin, katerim so dodali delce za sledenje ter za ugotavljanje tokovnega režima tekočin (laminarni - turbulentni tok) (30,31). Navzkrižna korelacija je metoda za ocenjevanje stopnje korelacije dveh vrst ali vzorcev. Kot taka se lahko uporablja tudi kot metoda slikovnega ujemanja, ki temelji na ujemanju vrednosti posameznih točk iz območja objekta med trenutno in prejšnjo sliko v zaporedju slik. Pri navzkrižni korelaciji iz ene slike vzamemo vzorec, matriko barvnih vrednosti. Na drugi sliki izberemo iskalno okno, to je matrika, večja od vzorca, v katerem bomo poskušali najti podmatriko, enake velikosti kot vzorec, ki je vzorcu najbolj podobna (slika 9). Ker je iskalno okno večje od vzorca, moramo vzorčno matriko premikati po iskalnem oknu in preveriti barvno ujemanje za vse možne položaje. Rezultat ujemanja z navzkrižno korelacijo je praviloma položaj centralne slikovne točke vzorca v iskalnem oknu pri najboljšem koeficientu ujemanja. Koeficient ujemanja r, se izračuna kot (enačba 7):

$$r = \frac{\sum_{i=1}^{n} x_{i} y_{i} - \frac{1}{n} \left(\sum_{i=1}^{n} x_{i} \right) \frac{1}{n} \left(\sum_{i=1}^{n} y_{i} \right)}{\sqrt{\left(\sum_{i=1}^{n} x_{i}^{2} - \frac{1}{n} \left(\sum_{i=1}^{n} x_{i} \right)^{2} \right) \left(\sum_{i=1}^{n} y_{i}^{2} - \frac{1}{n} \left(\sum_{i=1}^{n} y_{i} \right)^{2} \right)}}$$
(7)

Koeficient navzkrižne korelacije r lahko zavzame le vrednosti med -1 in 1. Mejni vrednosti predstavljata maksimalno korelacijo, 0 pa ničelno korelacijo. V enačbi 7 x_i predstavlja vrednost slikovne točke znotraj vzorčne matrike na prvi sliki in y_i vrednost istoležne slikovne točke znotraj matrike vzorca v iskalnem oknu na naslednji sliki. Indeks i pa teče od prve do zadnje slikovne točke v vzorcu (n) ter istoležnih slikovnih točkah matrike vzorca v iskalnem oknu (32,33).

Slika 9: Shematski prikaz principa navzkrižne korelacije (premikanje vzorca po iskalnem oknu) (prirejeno po 32)

2 NAMEN DELA

V farmaciji je obloga farmacevtskega izdelka izrednega pomena, saj z njo v veliko primerih omogočimo ustrezno terapijo za bolnika (podaljšano sproščanje, zakasnjeno sproščanje, gastrorezistenca,...). Zato je zelo pomembno, da dobro poznamo in razumemo sam proces oblaganja, kajti le tako lahko načrtujemo proces tako, da dobimo želeno oblogo. V tej magistrski nalogi se bomo posvetili oblaganju pelet v klasični Wursterjevi komori in Wursterjevi komori z generatorjem vrtinčenja. Poskušali bomo ugotoviti, kako določene spremenljivke v procesu oblaganja vplivajo na hitrost pelet v sami komori. Mednje spadajo pretok zraka za fludizacijo, višina razmejitvenega valja od dna komore (razmik) in velikostni razred pelet. S tem bomo pripomogli k boljšemu razumevanju vpliva teh spremenljivk na proces oblaganja in s tem k boljši vodljivosti samega procesa oziroma večjemu nadzoru nad procesom oblaganja. Zavedati se je potrebno namreč, da hitrost delcev v Wursterjevi komori vpliva na cirkulacijski čas delcev, le ta pa na čas oblaganja potreben za dosego določene debeline obloge. Ostale procesne spremenljivke, kot so temperatura zraka za fluidizacijo, tlak razprševanja skozi šobo za oblaganje in pretok tekočine za razprševanje bodo v vseh poskusih ostale nespremenjene in sicer 50 °C, 2 bara in 10 g/min. Poleg odvisnosti hitrosti pelet od zgoraj navedenih spremenljivk bomo preučili tudi, kako se hitrost pelet spreminja v odvisnosti od njihove oddaljenosti od roba razmejitvenega valja in sicer pri izhodu pelet iz le tega (slika 10). Poleg hitrosti bomo vrednotili tudi kote leta pelet.

Slika 10: Prikaz oddaljenosti od roba razmejitvenega valja proti notranjosti, pri izhodu pelet iz valja - rdeče črte

Za pridobitev eksperimentalnih podatkov bomo uporabili modificirano PIV metodo z barvnima bliskavicama in program za analizo slik imagedoki_rgb_cc. Za vsak posamezen eksperiment (npr. klasična Wursterjeva komora; pretok zraka za fludizacijo 130 m³/h; razmik 25 mm; velikost pelet 600-710 μ m; notranji rob razmejitvenega valja) bomo pridobili 20 podatkov o hitrosti in kotu leta pelet ter iz le teh izračunali povprečni vrednosti. Eksperimentalno pridobljene povprečne vrednosti bomo nato grafično prikazali in preverili ponovljivost razvite metode. S pridobljenimi podatki bomo poskušali potrditi sledeče hipoteze:

- pri enakih pogojih oblaganja dosežejo pelete višje hitrosti v Wursterjevi komori z generatorjem vrtinčenja kot pa v klasični Wursterjevi komori,
- večji kot je pretok zraka za fludizacijo, višje hitrosti dosežejo pelete,
- večja kot je višina razmejitvenega valja od dna komore (razmik), nižje hitrosti dosežejo pelete,
- večje kot so pelete, nižje hitrosti dosežejo,
- hitrost pelet se pri klasični Wursterjevi komori povečuje z oddaljevanjem od roba razmejitvenega valja, pri Wursterjevi komori z generatorjem vrtinčenja pa je na robu največja, nato se z oddaljevanjem od roba zmanjšuje in zopet naraste, ko se približamo središču razmejitvenega valja,
- pri enakih pogojih oblaganja dosežejo pelete večje vrednosti kotov leta v Wursterjevi komori z generatorjem vrtinčenja kot pa v klasični Wursterjevi komori.

3 MATERIALI IN METODE

3.1 CELLETS®

Za določevanje lokalnih hitrosti pelet smo uporabili nevtralna peletna jedra iz mikrokristalne celuloze - Cellets, nemškega proizvajalca HARKE Pharma. So bele barve, praviloma sferična in jih je mogoče dobiti v različnih velikostnih frakcijah med 100 - 1400 µm. Pri našem eksperimentu smo uporabljali velikostne razrede 600 - 710 µm, 900 - 1000 µm in 1120 - 1250 µm. Masa uporabljene frakcije pelet v vsakem eksperimentu je bila 1000,0 g, določena s tehtnico Sartorius CP32025.

3.2 PRIPRAVA FRAKCIJ PELET

Za pripravo frakcij pelet smo uporabili sita proizvajalca Retsch velikosti 600 µm, 710 µm, 900 µm, 1000 µm, 1120 µm, 1250 µm in dno. S tem smo pridobili zgoraj omenjene velikostne razrede pelet. Sejanje smo izvajali z laboratorijskim stresalnikom Retsch AS 200 basic, ki je potekalo 10 min pri amplitudi optične skale 2. Priprava frakcij pelet je bila potrebna, ker so osnovne frakcije pelet relativno široke, mi pa smo med drugim preučevali tudi vpliv velikosti pelet na njihovo hitrost in smo morali zato osnovne širine porazdelitev velikosti frakcij proizvajalca zmanjšati.

3.3 POGOJI MERITEV

Lokalne hitrosti pelet smo preučevali v klasični Wursterjevi komori in Wursterjevi komori z generatorjem vrtinčenja. Uporabili smo vrtinčnoslojno napravo GPCG–1, nemškega proizvajalca Glatt GmbH. Vrtinčnoslojna oprema je bila povezana z kompresorjem Kaeser tipa SX 3-90, razvlaževalcem zraka Inštituta Zoran Rant iz Škofje Loke in črpalko Flocon 1003. Za merjenje hitrosti vpihovanega zraka smo uporabili anemometer Almemo 2390-3. Kot nadomestek raztopine za razprševanje se je uporabljala prečiščena voda. V komori smo namestili vrečasti filter, vrste PACF, za razprševanje prečiščene vode pa smo uporabili dvokanalno šobo z notranjim premerom 0,8 mm. Pri klasični Wursterjevi komori smo uporabili originalno porazdelitveno ploščo tipa B (slika 11), pri Wursterjevi komori z generatorjem vrtinčenja pa porazdelitveno ploščo, ki je nastala ob sodelovanju podjetja Brinox s Katedro za farmacevtsko tehnologijo, Fakultete za farmacijo, Univerze v Ljubljani (slika 11).

Slika 11: Porazdelitvena plošča B (desno) in porazdelitvena plošča, ki je nastala ob sodelovanju podjetja Brinox s Katedro za farmacevtsko tehnologijo (levo)

Nekateri pogoji - temperatura zraka za fluidizacijo (50 °C), tlak razprševanja skozi šobo za oblaganje (2 bara) in pretok tekočine za razprševanje (prečiščena voda, 10 g/min) so bili tekom vseh eksperimentov konstantni, drugi pa so se spreminjali, ker nas je zanimal njihov vpliv na lokalne hitrosti pelet. Med proučevane spremenljivke, povezane z vrtinčnoslojno opremo spadajo: pretok zraka za fludizacijo, višina razmejitvenega valja od dna komore (razmik) in zgoraj omenjeni tip komore (klasična Wursterjeva komora / swirl komora). Poleg spremenljivk, povezanih z vrtinčnoslojno opremo, pa nas je zanimal še vpliv velikosti pelet in položaja pelet od roba razmejitvenega valja na lokalne hitrosti pelet. Preglednica 2 prikazuje vse vrednosti, ki so jih tekom eksperimentov zgoraj omenjene spremenljivke zavzele. Pred začetkom vsake serije eksperimentov smo odčitali tudi temperaturo in vlažnost v laboratoriju.

spremenljivka	vrednosti, ki jih zavzame
komora	klasična Wursterjeva
	swirl Wursterjeva
pretok zraka za fludizacijo	105 m ³ /h
	130 m ³ /h
	156 m ³ /h
višina razmejitvenega valja od dna komore	10 mm
(razmik)	20 mm

Preglednica 2: Seznam spremenljivk v odvisnosti od katerih nas je zanimal profil hitrosti pelet in vrednosti, ki so jih zavzele tekom eksperimentov

25 mm
600 – 710 μm
900 – 1000 μm
1120 - 1250 μm
notranji rob razmejitvenega valja
5 mm od roba
10 mm od roba
15 mm od roba
20 mm od roba

3.4 ZAJEM SLIK

Zajem slik je potekal med samim procesom razprševanja prečiščene vode na peletna jedra s fotoaparatom Casio Exilim F1 EX z nastavitvami ISO 100, zaslonko F 1:3,4, goriščno razdaljo 200 mm, časom odprtosti zaslonke 1/500 s ter z zunanjima bliskavicama (Yongnou YN460 ii), ki sta omogočili efektivne čase osvetlitve 1/20000 s. Kratki časi osvetlitve so pomembni za preprečevanje zameglitve slike zaradi hitrega gibanja in bližine slikanih pelet. Fotoaparat je bil postavljen na pomično mizico Manfrotto 454 (slika 12), le ta pa je bila pritrjena na stojalo Manfroto 055Xprob preko kroglične glave Manfrotto 496RC2. Objektiv je bil opremljen z makro predlečo Raynox DCL-150. Slike pelet smo zajemali na izhodu pelet iz razmejitvenega valja. Osnovna nastavitev ravnine ostrenja je bila nastavljena na rob razmejitvenega valja s pomočjo premikanja fotoaparata po pomični mizici. Ob izostritvi (slika 13) smo nato fotoaparat s pomočjo pomične mizice premaknili za 3 mm (debelina robu razmejitvenega valja) v notranjost komore in s tem premaknili ravnino ostrine za ravno toliko (slika 12). Tako smo prišli na notranjo stran razmejitvenega valja in lahko posneli pelete, ki se gibljejo v tej ravnini, tik ob valju. V nadaljevanju smo se premikali po 5 mm proti notranjosti valja, dokler so bile slike še sprejemljive za obdelavo. Zaradi velike gostote pelet pred ravnino izostritve, so namreč slike s pomikanjem proti sredini razmejitvenega valja izgubljale na ostrini. Premike po 5 mm smo izbrali zato, ker je eksperimentalno določena globina ostrine pri našem sistemu 3,5 mm. Določili smo jo tako, da smo pri enakih nastavitvah kakor za slikanje pelet, posneli milimetrski papir pod kotom in odčitali razdaljo med ostro vidnimi črticami, ki označujejo milimetre. Zelo pomembno

je, da je fotoaparat ob zajemanju slik postavljen vodoravno, kar smo dosegli z uporabo vodne tehtnice za uravnavanje, ki smo jo pritrdili na fotoaparat.

Slika 12: Shematski prikaz pomikanja ravnine izostritve (levo) in pomična mizica s pomočjo katere smo premikali fotoaparat (desno)

Slika 13: Prikaz izostritve slike na rob razmejitvenega valja s pomočjo tiskanega besedila prilepljenega na rob valja

Fotoaparat je bil z zunanjima bliskavicama (flash) tipa Yongnou YN460 ii povezan preko namenskega vezja z mikrokrmilnikom Microchip dsPIC30F2010, tako da sta se ob zajemu slike s fotoaparatom sprožili tudi bliskavici. Bliskavici sta bili na mestu osvetljevanja prelepljeni, prva z rdečim barvnim filtrom Lee Filters 026 Bright Red in druga z zelenim barvnim filtrom Lee Filters 736 Twickenham Green, tako da je ob sprožitvi bliskavic prišlo do rdeče oziroma zelene osvetlitve. Bliskavici sta bili pritrjeni na stojalo Triopo MT-3128N6 z glavo Triopo 65-13-40. Vezje z mikrokrmilnikom (slika 14) je bilo načrtovano tako, da je mogoče nastaviti časovni razmik med proženjem ene in druge bliskavice, ki je v našem primeru znašal 500µs. Tako smo dosegli, da se je znotraj intervala nastanka slike sprva sprožila rdeča bliskavica in z zamikom 500 µs še zelena. Kot rezultat smo dobili sliko, ki sočasno prikazuje pelete v dveh časovnih točkah, vsaki obarvani v svoji barvi (slika 15).

Slika 14: Vezje z mikrokrmilnikom

Slika 15: Primer slike pridobljene s pomočjo sistema za zajem slik, desno zgoraj povečava iz slike, na kateri je lepo vidno, da gre za isto peleto v dveh časovnih točkah, vsakič obarvano v svoji barvi

Slika 16: Prikaz celotnega sistema za zajem slik skupaj z vrtinčnoslojno opremo

3.5 OBDELAVA SLIK

Po zajetju slik je sledila njihova obdelava s pomočjo programa imagedoki_rgb_cc (slika 17), ki ga je namensko razvil asistent Rok Šibanc mag. farm. in preko katerega dobimo podatek o hitrosti gibanja pelet.

Slika 17: Slika programa imagedoki_rgb_cc

Ko program uvozi sliko, avtomatsko označi konture prehodov intenzitete barv, omogoča pa tudi, da uporabnik sam dopolnjuje te oznake. Če pride do sklenitve črte, ki označuje te prehode, se obarva celotna notranjost pelete, kar predstavlja označeno peleto z znanima koordinatama. Postopek je predstavljen na sliki 18.

Slika 18: Postopni prikaz oznake pelete, od oznake robov pelete, ki jo izvede program sam, preko ročne dopolnitve teh robov, do sklenitve črte in obarvanja pelete. Postopek je opisan od leve proti desni za rdečo obarvanje, enako se stori nato še za zeleno obarvano peleto; zadnja slika desno prikazuje končno obarvanje pelete v obeh barvah

Pri obdelavi slik je bilo potrebno za vsako analizirano peleto pridobiti rdeče in zeleno obarvanje iste pelete, kot prikazuje slika 18, kajti le tako lahko program s pomočjo navzkrižne korelacije določi premik pelete brez predhodnega poznavanja središčne koordinate pelete. Velikost vzorčne matrike je bilo območje rdeče obarvane pelete, povečano za eno slikovno točko v vse smeri od rdeče obarvane pelete. Velikost iskalnega okna pa je bilo območje zeleno obarvane pelete, povečano za šest slikovnih točk v vse smeri od zeleno obarvane pelete.

Pomembno je, da je bil fotoaparat pri zajemu slike postavljen vodoravno. Če temu pogoju ne zadostimo, ima ravnina ostrine določen nagib, to pa bi pomenilo, da bi bilo možno gibanje analiziranih pelet v globino, brez izgube ostrine pelete v časovnem intervalu 500 μ s, bistveno večje, kot je to možno v primeru vodoravne postavitve fotoaparata – 3,5 mm (globina ostrine našega sistema za zajem slik). Pri vodoravni postavitvi vidimo peleto v obeh časovnih točkah ostro le, če se peleta v času 500 μ s v globino premakne za manj kot 3,5 mm. Z vodoravno postavitvijo fotoaparata smo torej zmanjšali napake v določanju hitrosti pelet, kajti iz takšne slike lahko razberemo zgolj gibanje tistih pelet, ki se gibljejo praktično zgolj v dveh dimenzijah. Za pretvorbo števila slikovnih pik na sliki v merske enote poti smo pri enakih nastavitvah kakor za slikanje pelet, posneli milimetrski papir in odčitali število slikovnih pik med črticama, ki označujeta milimetre s pomočjo razvitega programa. Dobljeno vrednost merila smo vnesli v nastavitve programa (78 slikovnih pik ustreza 1 mm). Tako je program lahko na osnovi števila slikovnih pik izračunal pripadajoče dolžine v mm. Ko je pot premika pelete (s) znana, pa ob poznanem razmiku v proženju bliskavic (t = 500 μ s) program izračuna hitrosti gibanja pelete v, po enačbi ϑ :

v = s/t (8)

. . .

Program uporabniku poleg hitrosti pelete poda tudi njeno velikost in okroglost (program jo določi na podlagi enačbe za okroglost predstavljene v preglednici 1; površino in obseg pridobi s pomočjo števila slikovnih pik). Primer izpisa programa prikazuje preglednica 3:

Pregled	nica 3: Pri	mer izpisa	ı program	a					
-74,0097	2391,1	2392,25	968,782	0,741554	@2459.5,83.69	Slika 2	-102,564	2358,97	2361,2

Od leve proti desni (preglednica 3) gre za tangencialno komponento hitrosti določeno preko primerjave središč obarvanih pelet (-74,0097), aksialno komponento hitrosti določeno preko primerjave središč obarvanih pelet (2391,1), hitrost pelete določeno preko

primerjave središč (slika 19) obarvanih pelet (2392,25), velikost pelete (968,782), okroglost pelete (0,741554), koordinate središča pelete (@2459.5,83.69), številko slike znotraj serije, tangencialno hitrost določeno s pomočjo navzkrižne korelacije (-102,564), aksialno hitrost določeno s pomočjo navzkrižne korelacije (2358,97) in hitrost pelete določeno s pomočjo navzkrižne korelacije (2361,2) - naš glavni rezultat. Negativni predznak pomeni tangencialni premik pelete v desno, če pa se peleta premakne v levo ima ta tangencialni premik pozitiven predznak.

Središče označene pelete je program izračunal na osnovi otežitve po intenzitetah. To pomeni, da se sešteje vse vrednosti barvne intenzitete vsake slikovne točke označene pelete pomnožene z vrednostjo položaja slikovne točke in nato vsoto deli z vsoto vseh vrednosti barvne intenzitete slikovnih točk označene pelete. Tako program pridobi koordinate središča označene pelete.

Kote leta pelet (β) smo izračunali preko tangencialne in aksialne hitrosti, določene s pomočjo navzkrižne korelacije po enačbi *9*:

 $\beta = \tan^{-1}$ (tangencialna hitrost/aksialna hitrost) (9)

Za primer opisan zgoraj:

 $\tan^{-1}(-102,564/2358,97) = -2,4896^{\circ}$

4 REZULTATI IN RAZPRAVA

4.1 PREDSTAVITEV REZULTATOV IN PRIMERI

Na osnovi postopka opisanega pri metodah, smo iz slikovnega materiala pridobili hitrosti pelet in kote leta pelet pri določenih pogojih. Za vsak eksperiment smo analizirali 20 pelet in nato iz pridobljenih vrednosti izračunali povprečje ter standardni odklon vzorca s pomočjo Excelovih funkcij. Primer rezultatov za določen eksperiment predstavlja preglednica 4. V predzadnji vrstici so povprečja stolpcev, v zadnji pa standardni odkloni.

tangencialna hitrost določena preko primerjave središč (mm/s)	aksialna hitrost določena preko <u>primerjave</u> <u>središč</u> (mm/s)	hitrost pelet določena preko <u>primerjave</u> <u>središč</u> (mm/s)	velikost pelet (µm)	okroglost pelet	koordinate središča pelet na sliki	številka slike znotraj serije slik eksperi- menta	tangencialna hitrost določena s pomočjo <u>navzkrižne</u> <u>korelacije</u> (mm/s)	aksialna hitrost določena s pomočjo <u>navzkrižne</u> <u>korelacije</u> (mm/s)	hitrost pelet določena s pomočjo <u>navzkrižne</u> <u>korelacije</u> (mm/s)	kot leta pelet (°)
144,5	999,1	1010	1169	0,671	@1518.45,433.04	slika 1	227,1	949,7	976,5	13,45
-346,9	1083	1137	1206	0,462	@1721.29,505.698	slika 2	-206,5	1025	1045	-11,39
-155,6	549,5	571,1	1133	0,822	@1354.87,637.701	slika 3	-136,8	526,5	543,9	-14,56
-76,19	716,4	720,5	1149	0,849	@1084.35,987.188	slika 4	-87,74	627,1	633,2	-7,965
-75,22	939,5	942,5	1136	0,733	@2261.05,465.647	slika 5	-129,0	985,8	994,2	-7,457
16,99	1219	1219	1132	0,825	@2089.24,636.19	slika 6	36,13	1200	1201	1,725
25,26	810,0	810,4	1253	0,838	@1068.62,860.86	slika 7	-2,581	756,1	756,1	-0,196
-277,5	1609	1633	1142	0,489	@2121.38,501.681	slika 8	-278,7	1631	1655	-9,697
-199,3	1015	1035	1190	0,801	@2322.41,498.578	slika 9	-294,2	991,0	1034	-16,53
-383,8	1471	1520	1197	0,775	@2459.13,594.276	slika 10	-405,2	1471	1526	-15,40
434,8	1418	1483	1147	0,809	@1208.33,619.425	slika 11	482,6	1404	1485	18,97
-256,8	1037	1069	1202	0,812	@2618.41,103.741	slika 12	-258,1	941,9	976,6	-15,32
123,4	1121	1128	1153	0,834	@1801.34,491.587	slika 13	144,5	1128	1137	7,302
-427,2	717,3	834,9	1162	0,531	@1741.41,863.906	slika 14	-283,9	668,4	726,2	-23,01
-70,37	1129	1131	1162	0,853	@1806.62,599.683	slika 15	-46,45	1074	1075	-2,478
-102,5	902,2	908,1	1183	0,809	@2479.42,446.055	slika 16	-103,2	831,0	837,4	-7,081
-24,23	952,9	953,2	1165	0,837	@2492.01,698.786	slika 17	-30,97	944,5	945,0	-1,878
-206,3	935,6	958,1	1146	0,793	@1958.42,488.811	slika 18	-170,3	861,9	878,6	-11,18
-270,6	1054	1088	1160	0,774	@1757.74,796.347	slika 19	-234,8	929,0	958,3	-14,19
-182,2	1041	1057	1225	0,746	@2092.32,838.234	slika 20	-103,2	960,0	965,5	-6,137
-115,5	1036	1060	1171	0,753			-94,06	995,2	1017	-6,152
									283,5	10,50

Preglednica 4: Primer rezultatov

Preglednica 4 vsebuje podatke za eksperiment izveden pri sledečih pogojih: klasična Wursterjeva komora, notranji rob razmejitvenega valja, pretok zraka za fludizacijo 105 m³/h, višina razmejitvenega valja od dna komore (razmik) 20 mm, velikostni razred pelet 1120 - 1250 µm. Temperatura produkta je bila 33 °C, temperatura v laboratoriju 24,4 °C in

relativna vlažnost 37 %. Tangencialna, aksialna in končna hitrost, določene preko primerjave središč, so manj pomembne, saj je program sposoben določiti lego pelete z navzkrižno korelacijo in so le ti rezultati hitrosti bolj točni. Pri tangencialni hitrosti negativni predznak pomeni let pelete v desno, pozitivni pa v levo. Enako velja za kote leta pelet. Parameter okroglosti pelet nam pove nekaj o obliki analizirane pelete. Rezultati lepo kažejo, da pelete niso zgolj okrogli delci, kajti povprečna okroglost je med eksperimenti nihala nekje med 0,7 - 0,8, pri čemer 1 pomeni popolnoma okrogel delec. Bolj kot okroglost pa nas je zanimala velikost pelet, saj je to ena izmed spremenljivk, katere vpliv na hitrost smo raziskovali. Posledično smo posamezne analizirane pelete, ki so bile izven definiranega intervala velikosti za določen eksperiment izločili iz vrednotenja hitrosti. Rezultati eksperimentov so podrobno predstavljeni v obliki zbirnih preglednic v prilogi (18 – 62). Primer rezultatov iz preglednice 4 je tukaj demonstrativno predstavljen v preglednici 5, in sicer v drugi vrstici. V teh zbirnih preglednicah so predstavljeni le končni rezultati, ki nas zanimajo: povprečna hitrost pelet določena s pomočjo navzkrižne korelacije in povprečen kot leta pelet ter njuna standardna odklona.

Preglednica 5: Primer zbirne preglednice (temperatura v laboratoriju 24,4 °C, relativna vlažnost 37 %)

razmik	pretok	velikost	položaj	hitrost				T produkta
(mm)	(m^{3}/h)	(µm)	(mm)	(mm/s)	sd (mm/s)	kot (°)	sd (°)	(°C)
20	105	1120-1250	0	1017	283,5	-6,152	10,50	33
			5	1060	229,3	-5,352	10,45	36
			10	1153	143,8	1,739	11,74	34
			15	ni	ni	ni	ni	ni

Na osnovi zbirnih preglednic smo s pomočjo programa Mathematica (Wolfram Research, VB) izrisali 3D grafe. Vsak 3D graf predstavlja vpliv dveh spremenljivk (možne kombinacije so: razmik - pretok; razmik -velikost in velikost - pretok) na hitrost pelet. Grafi so organizirani v obliki grafičnih preglednic za dva različna tipa komor (klasična Wursterjeva komora - CW ter Swirl komora - SW) ter za tri različne vrednosti tretje spremenljivke, ki ni zajeta na grafih (npr. za graf, kjer se preučuje vpliv razmika in pretoka na lokalne hitrosti pelet, je to velikost). Preglednice z grafi smo pripravili za položaj notranji rob razmejitvenega valja ter za položaj 10 mm od notranjega roba razmejitvenega valja. Takšen način prikaza rezultatov omogoča nazoren pregled hitrosti v odvisnosti od preučevane spremenljivke, ob konstantnih ostalih spremenljivkah. Nadalje smo za vsak izrisan 3D graf z podatki, ki jih zajema naredili tudi statistično obravnavo in sicer, dvofaktorsko ANOVO, Levenov test za ugotavljanje homogenosti varianc in morebitno

potrebno modifikacijo F kritičnega pri dvo-faktorski ANOVI. Podrobnejši opis, kot tudi sama izvedba statistične obravnave je v prilogi. Končni rezultati te obravnave so zbrani v preglednicah a - f v prilogi. Grafi interakcij, ki natančneje obrazložijo morebitne ugotovljene interakcije pri dvo-faktorski ANOVI (kjer je dvo-faktorska ANOVA pokazala interakcijo, je to ob grafu tudi pripisano), so predstavljeni pri obravnavi vsakega vpliva posebej, v obliki grafičnih preglednic. Razumevanje interakcij in branje grafov interakcij je razloženo v prilogi.

4.2 PONOVLJIVOST

4.2.1 PONOVLJIVOST ZNOTRAJ SERIJE MERITEV

Pri ponovljivosti znotraj serije meritev smo šestkrat analizirali (vsakič po 20 pelet) isti eksperiment (naključno izbrane pelete iz slik enkrat opravljene meritve) in ugotavljali ali so dobljeni rezultati s 95 % verjetnostjo statistično signifikantno enaki. Za ponovljivost znotraj serije meritev smo hoteli namreč dokazati ravno slednje. Naredili smo dve takšni analizi ponovljivosti in sicer eno pri eksperimentu, kjer pelete dosegajo nižje hitrosti (velikost 600 - 710 μ m; razmik 20 mm in pretok 105 m³/h) in eno pri eksperimentu, kjer pelete dosegajo višje hitrosti (velikost 900-1000 µm; razmik 10 mm in pretok 156 m³/h). Oba eksperimenta sta bila izvedena na klasični Wursterjevi komori na notranjem robu razmejitvenega valja. Statistično signifikantno enakost povprečnih vrednosti hitrosti pelet smo ugotavljali s pomočjo eno-faktorske analize variance (eno-faktorske ANOVE). Normalnost distribucij populacij, iz katerih smo vzeli vzorce, smo predpostavili, enakost varianc pa smo preverili s pomočjo Levenovega testa z uporabo povprečne vrednosti, ki nam pove ali je potrebna modifikacija F kritičnega pri eno-faktorski analizi variance ali ne (postopek izvedbe opisan v prilogi). Kot je razvidno iz slike 20 in 21, so rezultati povprečnih vrednosti hitrosti pelet v obeh primerih s 95% verjetnostjo statistično signifikantno enaki, kajti p vrednost je v obeh primerih nad 0,05.

Anova: Single Facto	r					
SUMMARY						
Groups	Count	Sum	Average	Variance		
1	20	19235,86	961,7929	26926,9		
2	20	20217,03	1010,851	73717,63		
3	20	19791,56	989,578	78788,17		
4	20	19296,86	964,8431	80020,76		
5	20	20462,34	1023,117	66966,56		
6	20	18396,73	919,8367	37356,92		
ANOVA						
Source of Variation	SS	df	MS	F	P-value	F crit
Between Groups	141337	5	28267,39	0,466232	0,800699	2,293911
Within Groups	6911762	114	60629,49			
Total	7053099	119				

Slika 20: Izpis eno-faktorske ANOVE ($\alpha = 0,05$) za ugotavljanje ponovljivosti znotraj serije meritev (za določanje lokalnih hitrosti pelet) za eksperiment: klasična Wursterjeva komora, notranji rob razmejitvenega valja, velikost 600 - 710 µm, razmik 20 mm in pretok 105 m³/h. P vrednost pri Levenovem testu je bila 0,129393 in zato modifikacija F kritičnega pri eno-faktorski ANOVI ni potrebna
Anova: Single Fac	tor					
SUMMARY						
Groups	Count	Sum	Average	Variance		
Column 1	20	50621,06	2531,053	44685,5		
Column 2	20	51506,96	2575,348	22265,57		
Column 3	20	50336,92	2516,846	41322,07		
Column 4	20	52754,19	2637,71	62937,73		
Column 5	20	50962,65	2548,133	45152,12		
Column 6	20	51249,23	2562,462	43813,52		
ANOVA						
Source of Variatior	SS	df	MS	F	P-value	F crit
Between Groups	181983,7	5	36396,74	0,839355	0,524483	2,293911
Within Groups	4943354	114	43362,75			
Total	5125337	119				

Slika 21: Izpis eno-faktorske ANOVE ($\alpha = 0,05$) za ugotavljanje ponovljivosti znotraj serije meritev (za določanje lokalnih hitrosti pelet) za eksperiment: klasična Wursterjeva komora, notranji rob razmejitvenega valja, velikost 900 - 1000 µm, razmik 10 mm in pretok 156 m³/h. P vrednost pri Levenovem testu je bila 0,184198 in zato modifikacija F kritičnega pri eno-faktorski ANOVI ni potrebna

Izračunali smo tudi relativni standardni odklon (RSD) povprečij vseh šestih analiz za oba primera po enačbi *10*:

 $RSD = (Sd/\bar{x})100$ (10)

Kjer je Sd standardni odklon povprečij vseh šestih analiz in \bar{x} povprečje povprečij vseh šestih analiz. Za primer na sliki 20 znaša RSD ((37,59481/978,3365)100) 3,84 % in za primer na sliki 21, 1,66 %. Glede na to, da smo si želeli RSD pod 5 %, je to poleg ANOVE še dodatni dokaz, da je naša metoda za določanje lokalnih hitrosti pelet z vidika ponovljivosti znotraj serije meritev ustrezna.

Enako kot za ugotavljanje ponovljivosti določanja lokalnih hitrosti pelet znotraj serije meritev smo napravili tudi za kote leta pelet. Kot je razvidno iz slike 22, ponovljivost pri pogojih, ko pelete dosegajo nižje hitrosti za kote leta pelet, ni zagotovljena. Obratno pa je ponovljivost pri pogojih, ko pelete dosegajo višje hitrosti za kote leta pelet s 95 % verjetnostjo statistično signifikantno, zagotovljena (slika 23). Glede na zgoraj opisano in relativni standardni odklon povprečij vseh šestih analiz kotov za primer iz slike 22, kjer je 122 % in primer iz slike 23, kjer je 45,7 %, lahko rečemo, da metoda z vidika ponovljivosti znotraj serije meritev za določanje kotov leta pelet ni primerna. Z metodo smo želeli predvsem pokazati, da pri enakih pogojih oblaganja dosežejo pelete večje kote leta pri Wursterjevi komori z generatorjem vrtinčenja v primerjavi s klasično Wursterjevo komoro. Ob pregledu zbirnih preglednic v prilogi vidimo, da predstavlja kot leta pelet v primeru iz

slike 22 (10,36°) največje odstopanje od 0° od vseh kotov pri vseh meritvah za klasično Wursterjevo komoro, zato smo naredili še dodatno analizo slik pri tem eksperimentu in rezultate le - te zamenjali s prvo analizo pri preučevanju ponovljivosti znotraj serije meritev. Novi rezultat predstavlja slika 24. Vidimo, da je v tem primeru rezultat drugačen in sicer so dobljeni rezultati s 95 % verjetnostjo statistično signifikantno enaki. Nov relativni standardni odklon povprečji vseh šestih analiz za primer iz slike 24 pa je 95,4 %. Nihanja povprečij analiz so velika, vendar ob pregledu zbirnih preglednic v prilogi vidimo, da so razlike med koti pri klasični Wursterjevi komori in Wursterjevi komori z generatorjem vrtinčenja še mnogo večje. Na podlagi zgoraj opisanega, metoda ni najbolj primerna za določanje kotov leta pelet z vidika ponovljivosti znotraj serije meritev, vendar pa menimo, da je ponovljivost metode vseeno dovolj dobra za obravnavo naše hipoteze, še posebej pri pogojih, ko pelete dosegajo višje hitrosti.

Anova: Single Fact	or					
SUMMARY						
Groups	Count	Sum	Average	Variance		
Column 1	20	207,1046	10,35523	114,2916		
Column 2	20	74,18193	3,709097	106,0083		
Column 3	20	76,29959	3,81498	97,0898		
Column 4	20	-16,1519	-0,8076	99,37492		
Column 5	20	6,458017	0,322901	65,38976		
Column 6	20	39,56292	1,978146	142,1233		
ANOVA						
Source of Variation	SS	df	MS	F	P-value	F crit
Between Groups	1553,224	5	310,6448	2,985641	0,014327	2,293911
Within Groups	11861,28	114	104,0463			
Total	13414,5	119				

Slika 22: Izpis eno-faktorske ANOVE ($\alpha = 0,05$) za ugotavljanje ponovljivosti znotraj serije meritev (za določanje kotov leta pelet) za eksperiment: klasična Wursterjeva komora, notranji rob razmejitvenega valja, velikost 600 - 710 µm, razmik 20 mm in pretok 105 m³/h. P vrednost pri Levenovem testu je bila 0,72159 in zato modifikacija F kritičnega pri eno-faktorski ANOVI ni potrebna

Anova: Single Facto	or					
SUMMARY						
Groups	Count	Sum	Average	Variance		
Column 1	20	-31,2826	-1,56413	28,36232		
Column 2	20	-58,0868	-2,90434	10,93711		
Column 3	20	-39,4587	-1,97294	16,92056		
Column 4	20	-40,3229	-2,01615	14,53932		
Column 5	20	-7,8426	-0,39213	13,90148		
Column 6	20	-37,3269	-1,86635	9,27451		
ANOVA						
Source of Variation	SS	df	MS	F	P-value	F crit
Between Groups	66,74301	5	13,3486	0,852625	0,515408	2,293911
Within Groups	1784,771	114	15,65588			
Total	1851,514	119				

Slika 23: Izpis eno-faktorske ANOVE ($\alpha = 0,05$) za ugotavljanje ponovljivosti znotraj serije meritev (za določanje kotov leta pelet) za eksperiment: klasična Wursterjeva komora, notranji rob razmejitvenega valja, velikost 900 - 1000 µm, razmik 10 mm in pretok 156 m³/h. P vrednost pri Levenovem testu je bila 0,127098 in zato modifikacija F kritičnega pri eno-faktorski ANOVI ni potrebna

Anova: Single Factor						
SUMMARY						
Groups	Count	Sum	Average	Variance		
Column 1	20	54,08164	2,704082	190,5271		
Column 2	20	74,18193	3,709097	106,0083		
Column 3	20	76,29959	3,81498	97,0898		
Column 4	20	-16,1519	-0,8076	99,37492		
Column 5	20	6,458017	0,322901	65,38976		
Column 6	20	39,56292	1,978146	142,1233		
ANOVA						
Source of Variation	SS	df	MS	F	P-value	F crit
Between Groups	347,8744	5	69,57488	0,595919	0,703109	2,29391
Within Groups	13309,75	114	116,7522			
Total	13657,62	119				

Slika 24: Izpis eno-faktorske ANOVE ($\alpha = 0,05$) za ugotavljanje ponovljivosti znotraj serije meritev (za določanje kotov leta pelet) za eksperiment: klasična Wursterjeva komora, notranji rob razmejitvenega valja, velikost 600 - 710 µm, razmik 20 mm in pretok 105 m³/h, pri čemer je prva analiza zamenjana. P vrednost pri Levenovem testu je bila 0,243156 in zato modifikacija F kritičnega pri eno-faktorski ANOVI ni potrebna

4.2.2 PONOVLJIVOST MED SERIJAMI MERITEV

Pri ugotavljanju ponovljivosti med serijami meritev smo želeli dokazati, da lahko določen eksperiment ponovimo kadarkoli želimo in dobimo statistično signifikantno enak rezultat z določeno verjetnostjo (v našem primeru 95 %). Za testiranje smo izbrali sledeč eksperiment: Komora z generatorjem vrtinčenja, razmik 20 mm, velikost 900 - 1000 µm in pretok 130 m³/h. Položaj od roba razmejitvenega valja se je tekom eksperimenta spreminjal. Eksperiment smo izvedli na dva različna dneva in nato dobljene rezultate primerjali s pomočjo dvostranskega Studentovega t-testa, kajti morebitno odstopanje je lahko v obe smeri. Predpostavili smo normalnost distribucij in enakost varianc vzorcev. Rezultati so predstavljeni na slikah 25 - 28. Vidimo da so dobljeni rezultati s 95 % verjetnostjo statistično signifikantno enaki v vseh štirih primerih, kajti v vseh primer je p vrednost pri dvostranskem Studentovem t-testu nad 0,05.

t-Test: Two-Sample Assuming Equal Variances			t-Test: Two-Sample Assuming Ec	ual Variano	es
	Variable 1	Variable 2		Variable 1	Variable 2
Mean	1637,587	1763,277	Mean	1964,816	1842,792
Variance	253559,9	114927,9	Variance	325619	114307,9
Observations	20	20	Observations	20	20
Pooled Variance	184243,9		Pooled Variance	219963,5	
Hypothesized Mean Difference	0		Hypothesized Mean Difference	0	
df	38		df	38	
t Stat	-0,92599		t Stat	0,822754	
P(T<=t) one-tail	0,180148		P(T<=t) one-tail	0,207891	
t Critical one-tail	1,685954		t Critical one-tail	1,685954	
P(T<=t) two-tail	0,360296		P(T<=t) two-tail	0,415781	
t Critical two-tail	2,024394		t Critical two-tail	2,024394	

Slika 25: Studentov t-test za položaj: notranji rob razmejitvenega valja

Slika 26: Studentov t-test za položaj: 5 mm od notranjega roba razmejitvenega valja

t-Test: Two-Sample Assuming Equal Variances			t-Test: Two-Sample Assuming Equal Variances			
	Variable 1	Variable 2		Variable 1	Variable 2	
Mean	1870,287	2167,788	Mean	2184,397	2193,079	
Variance	289587,4	194336,2	Variance	210817,1	320292,2	
Observations	20	20	Observations	20	20	
Pooled Variance	241961,8		Pooled Variance	265554,6		
Hypothesized Mean Difference	0		Hypothesized Mean Difference	0		
df	38		df	38		
t Stat	-1,91256		t Stat	-0,05328		
P(T<=t) one-tail	0,031682		P(T<=t) one-tail	0,478895		
t Critical one-tail	1,685954		t Critical one-tail	1,685954		
P(T<=t) two-tail	0,063363		P(T<=t) two-tail	0,95779		
t Critical two-tail	2,024394		t Critical two-tail	2,024394		

Slika 27: Studentov t-test za položaj: 10 mm Slika 28: Studentov t-test za položaj: 15 mm od notranjega roba razmejitvenega valja

od notranjega roba razmejitvenega valja

Enako smo naredili tudi za kote leta pelet, kar prikazujejo slike od 29 - 32. Tudi v tem primeru vidimo da so dobljeni rezultati s 95 % verjetnostjo statistično signifikantno enaki v vseh štirih primerih, kajti v vseh primer je p vrednost pri dvostranskem Studentovem t-testu nad 0,05.

e reserrire sampre		Equal Faile	 e restricte sample		Equal Faile	
	Variable 1	Variable 2		Variable 1	Variable 2	
Mean	-9,25437	-14,6873	Mean	-9,758	-16,1334	
Variance	186,6469	55,01434	Variance	50,18	172,7514	
Observations	20	20	Observations	20	20	
Pooled Variance	120,8306		Pooled Variance	111,4657		
Hypothesized Mean	0		Hypothesized Mean	0		
df	38		df	38		
t Stat	1,562945		t Stat	1,909587		
P(T<=t) one-tail	0,063178		P(T<=t) one-tail	0,031879		
t Critical one-tail	1,685954		t Critical one-tail	1,685954		
P(T<=t) two-tail	0,126356		P(T<=t) two-tail	0,063757		
t Critical two-tail	2,024394		t Critical two-tail	2,024394		

t-Test: Two-Sample Assuming Equal Variances t-Test: Two-Sample Assuming Equal Variances

Slika 29: Studentov t-test za položaj: notranji rob razmejitvenega valja

Slika 30: Studentov t-test za položaj: 5 mm od notranjega roba razmejitvenega valja

t-Test: Two-Sample Assuming Equal Variances			t-Test: Two-Sample	Assuming	Equal Varia	ances	
	Variable 1	Variable 2			Variable 1	Variable 2	
Mean	-8,12928	-9,77185		Mean	-9,80261	-12,1244	
Variance	105,0405	90,57258		Variance	120,2853	68,31391	
Observations	20	20		Observations	20	20	
Pooled Variance	97,80653			Pooled Variance	94,29963		
Hypothesized Mean	0			Hypothesized Mean	0		
df	38			df	38		
t Stat	0,52522			t Stat	0,756067		
P(T<=t) one-tail	0,301241			P(T<=t) one-tail	0,227135		
t Critical one-tail	1,685954			t Critical one-tail	1,685954		
P(T<=t) two-tail	0,602482			P(T<=t) two-tail	0,454271		
t Critical two-tail	2,024394			t Critical two-tail	2,024394		

Slika 31: Studentov t-test za položaj: 10 mm Slika 32: Studentov t-test za položaj: 15 mm od notranjega roba razmejitvenega valja od notranjega roba razmejitvenega valja

Na osnovi zgoraj opisanega je metoda z vidika ponovljivosti med serijami meritev ustrezna tako za preučevanje lokalnih hitrosti pelet, kot tudi za preučevanje kotov leta pelet.

4.3 VPLIV PRETOKA ZRAKA ZA FLUDIZACIJO NA LOKALNE HITROSTI PELET

Lokalne hitrosti pelet se na notranjem robu razmejitvenega valja, za obe komori v vseh primerih večajo z večanjem pretoka zraka za fludizacijo (preglednica 6). Na osnovi pregleda dvo-faktorskih ANOV v preglednici a in b v prilogi, lahko rečemo, da je ta vpliv pretoka (večji pretok - večje hitrosti) na lokalne hitrosti pelet statistično signifikanten. Tako odvisnost smo tudi pričakovali, saj ob večjem pretoku zraka, zrak pelete močneje pospešuje znotraj razmejitvenega valja. Nadalje smo ugotovili, da so lokalne hitrosti pelet pri klasični Wursterjevi komori večje kot pri swirl komori, pri kombinaciji pretok zraka za fludizacijo 130 m³/h ali 156 m³/h in razmik 10 mm ter v primeru, ko je pretok zraka za fludizacijo 105 m³/h, razmik 10 mm in velikost 600 - 710 µm. Pri vseh drugih kombinacijah pogojev so lokalne hitrosti pelet večje pri swirl komori. Na osnovi preglednice 6 lahko rečemo tudi, da so razlike v lokalnih hitrostih pelet med različnimi pretoki zraka za fludizacijo manjše pri swirl komori (razpon lokalnih hitrosti za swirl komoro je 1167 mm/s - 2041 mm/s, za klasično Wursterjevo komoro pa 760 mm/s - 2638 mm/s), torej je swirl komora manj občutljiva na tovrstno spreminjanje pogojev kot klasična Wursterjeva komora.

Preglednica 6: Vpliv pretoka na lokalne hitrosti pelet za položaj notranji rob razmejitvenega valja

Interakcije med velikostno frakcijo in pretokom zraka za fludizacijo pri klasični Wursterjevi komori (preglednica 7) izhajajo iz vpliva pretoka na vpliv velikosti na lokalne hitrosti pelet in jih zato tu nismo obravnavali, smo pa te interakcije opisali pri poglavju vpliv velikostne frakcije pelet na lokalne hitrosti pelet. Interakcija pri Swirl komori, pa je posledica večjih razlik med hitrostmi v odvisnosti od pretoka pri velikosti 900 - 1000 μm, kot pri ostalima velikostma pelet (preglednica 7). Nismo ji dali večjega pomena, ker je do nje prišlo šele po modifikaciji F kritičnega in ker so te razlike majhne.

Interakcije med razmikom in pretokom zraka za fludizacijo pri klasični Wursterjevi komori so posledica vpliva razmika na vpliv pretoka na lokalne hitrosti pelet (preglednica 8). Vidimo lahko namreč, da je pri razmiku 10 mm bistveno bolj izražena odvisnost večji pretok - večje hitrosti, kot pri razmiku 20 mm in 25 mm, pri vseh treh velikostnih razredih. To je najverjetneje posledica manjše številčne gostote pelet pri nižjem razmiku in posledično manj trkov med peletami, ki upočasnjujejo pelete in s tem motijo neposredno odvisnost pretok zraka za fludizacijo - hitrost pelet.

Preglednica 8: Grafi za preučevanje interakcij med razmikom in pretokom zraka za fludizacijo za položaj notranji rob razmejitvenega valja; krivulje predstavljajo pretoke vpihovanega zraka (m³/h)

Odvisnost, večji pretok zraka za fludizacijo - večja hitrost pelet, pri položaju 10 mm od notranjega roba razmejitvenega valja, velja ravno tako, kot pri položaju notranji rob razmejitvenega valja, za obe komori (preglednica 9). Razlika v lokalnih hitrostih pelet med različnimi pretoki zraka za fludizacijo je tudi tu statistično signifikantna (preglednica c in d v prilogi). Ob primerjavi hitrosti pelet v klasični Wursterjevi komori in swirl komori pri enakih pogojih, za položaj 10 mm od notranjega roba razmejitvenega valja (preglednica 9), smo ugotovili enak vzorec kot za položaj notranji rob razmejitvenega valja. Edina razlika je, da pri kombinaciji pretoka 156 m³/h in razmika 20 mm, hitrosti niso več večje pri swirl

komori ampak so enake kot tiste v klasični Wursterjevi komori, kar je v tem primeru posledica večjega povečanja hitrosti pelet pri položaju 10 mm od notranjega roba razmejitvenega valja pri klasični Wursterjevi komori v primerjavi s swirl komoro.

Preglednica 9: Vpliv pretoka na lokalne hitrosti pelet za položaj 10mm od notranjega roba razmejitvenega valja

Ob primerjavi grafov pri enakih pogojih, med preglednico 6 in preglednico 9, smo ugotovili da so hitrosti tako pri klasični Wursterjevi, kot pri swirl komori, pri vseh treh pretokih zraka za fludizacijo večje pri položaju 10 mm od notranjega roba razmejitvenega

valja. (najvišje dosežene lokalne hitrosti pelet za swirl komoro pri položaju notranji rob razmejitvenega valja so za pretok 105 m³/h 1555 mm/s, za pretok 130 m³/h 1836 mm/s in za pretok 156 m³/h 2041 mm/s, pri pozicij 10mm od notranjega roba razmejitvenega valja pa za pretok 105 m³/h 1845 mm/s, za pretok 130 m³/h 2285 mm/s in za pretok 156 m³/h 2216 mm/s; za klasično Wursterjevo komoro pa so najvišje hitrosti pelet pri položaju notranji rob razmejitvenega valja za pretok 105 m³/h 1527 mm/s, za pretok 130 m³/h 2221 mm/s in za pretok 156 m³/h 2638 mm/s, pri pozicij 10 mm od notranjega roba razmejitvenega valja pa za pretok 105 m³/h 2030 mm/s, za pretok 130 m³/h 2609 mm/s in za pretok 156 m³/h 3263 mm/s). Ugotovljeno potrjuje tudi slika 33, kjer je lepo razvidno, da hitrost peletam narašča proti sredini razmejitvenega valja. To je po našem mnenju pričakovana posledica same zgradbe komore. Pri klasični Wursterjevi komori se zrak vpihuje vzporedno z razmejitvenim valjem, pravokotno na ploščo (slika 34), na sredini plošče je šoba, ki dodatno dodaja zrak visoke hitrosti. Ta dva dejstva in pa trenje pelet ob robu razmejitvenega valja, kar pelete upočasnjuje, izrišejo pričakovan delni hitrostni profil pelet pri spreminjanju položaja od roba proti notranjosti razmejitvenega valja (predstavljeno na sliki 34). Pri swirl komori pa je zaradi generatorja vrtinčenja smer vpihovanja zraka drugačna (slika 34). Tu se zrak vijačno dviga in ima ob robovih največjo jakost, proti sredini razmejitvenega valja pa le-ta pada. Zopet je zaradi trenja pelet ob steni hitrost pelet tukaj nekoliko manjša, medtem ko na sredini predvidevamo dodaten vpliv šobe. Na podlagi povedanega pričakujemo, pri spreminjanju položaja od roba proti notranjosti razmejitvenega valja, hitrostni profil pelet, ki je predstavljen na sliki 34. Iz eksperimentov vidimo, da 15 mm od roba razmejitvenega valja še vedno ne preidemo v področje padca lokalnih hitrosti pelet (slika 33), ampak se obrat iz naraščanja v padanje najverjetneje zgodi kasneje.

Slika 33: Odvisnost hitrosti pelet od položaja za vse tri pretoke vpihovanega zraka (m³/h), pri fiksnem razmiku 20 mm in velikosti 900 - 1000 μm za klasično Wursterjevo komoro - levo in swirl komoro - desno. Krivulje predstavljajo pretoke zraka (m³/h)

Slika 34: Predviden hitrostni profil pelet pri spreminjanju položaja od roba razmejitvenega valja proti notranjosti za klasično Wursterjevo komoro (levo) in swirl komoro (desno) (prirejeno po 11,13)

Tudi pri položaju 10 mm od roba razmejitvenega valja vidimo, da je vpliv razmika na vpliv pretokov na lokalne hitrosti pelet enak, kot pri položaju notranji rob razmejitvenega valja (preglednica 10)

Preglednica 10: Grafi za preučevanje interakcij med razmikom in pretokom zraka za fludizacijo za položaj 10 mm od notranjega roba razmejitvenega valja; krivulje predstavljajo pretoke vpihovanega zraka (m³/h)

Ob pregledu preglednice 11 pa nismo mogli ugotoviti jasnih vplivov (so slabo izraženi) velikosti na vpliv pretokov na lokalne hitrosti pelet. Ta podatek postavlja pod vprašaj tudi interakcije predstavljene na grafih v preglednici 7, saj bi zgolj ob spremembi položaja pričakovali, enosmerno spremembo vseh lokalnih hitrosti pelet (kot videno se povečajo) in ohranitev vseh odvisnosti lokalnih hitrosti pelet od spremenljivk in njihovih interakcij. Za oba položaja velja, da so na osnovi statistične obdelave interakcije med spremenljivkama velikost pelet in pretok zraka za fludizacijo pri klasični Wursterjevi komori prisotne, vendar slabo izražene (nimajo velikega pomena).

Preglednica 11: Grafi za preučevanje interakcij med velikostjo pelet in pretokom zraka za fludizacijo za položaj 10 mm od notranjega roba razmejitvenega valja; krivulje predstavljajo pretoke vpihovanega zraka (m³/h)

4.4 VPLIV RAZMIKA NA LOKALNE HITROSTI PELET

Na osnovi preglednice 12 smo za klasično Wursterjevo komoro ugotovili, da so pri istih pogojih lokalne hitrost pelet pri razmiku 20 mm in 25 mm zelo podobne (največji hitrosti 1447 mm/s in 1528 mm/s), medtem, ko so pri razmiku 10 mm bistveno večje (največja hitrost 2638 mm/s). Statistična obravnava (preglednici b in e v prilogi) je potrdila, da ima razmik bistven vpliva na hitrost pelet. Lahko zapišemo odvisnost manjši razmik - večje lokalne hitrosti pelet. Odvisnost je pričakovana, ker je reža med valjem in distribucijsko ploščo omejujoč dejavnik za pretok pelet skozi valj, manjši razmik pa pomeni manj pelet v valju in zaradi tega, posledično višje hitrosti. 20 mm velik razmik, pa ne predstavlja več bistvene ovire za pretok pelet, zato tudi povečanje na 25 mm ne predstavlja bistvene spremembe. Zgoraj ugotovljeno odvisnost manjši razmik - večje lokalne hitrosti pelet za klasično Wursterjevo komoro so ugotovili tudi Chan et al. (15), s pomočjo slikovne metode in Fries et al. (34) ter Šibanc et al. (35) z računalniško simulacijo. Ob primerjavi hitrosti pelet med klasično Wursterjevo komoro in swirl komoro, pri enakih pogojih (preglednica 12), smo ugotovili, da so hitrosti pri razmiku 20 mm vedno večje pri swirl komori. Pri razmiku 10 mm pa so lokalne hitrosti pelet vedno večje pri klasični Wursterjevi komori, edini izjemi sta kombinaciji pogojev: pretok zraka za fludizacijo 105 m^{3}/h in velikost pelet 1120 - 1250 µm ali 900 - 1000 µm.

Preglednica 12: Vpliv razmika na lokalne hitrosti pelet za položaj notranji rob razmejitvenega valja

Za swirl komoro smo ugotovili, da pri velikosti pelet 600 - 710 µm in 900 - 1000 µm razmik nima vpliva na lokalne hitrosti pelet, pri velikosti pelet 1120-1250 µm pa je odvisnost enaka kot pri klasični Wursterjevi komori, torej manjši razmik - večje lokalne hitrosti pelet (preglednica 12 in 13). V preglednici b, v tretjem stolpcu v prilogi sicer vidimo, da naj bi razmik pri vseh treh velikostih pelet statistično signifikantno vplival na hitrost pelet, vendar je do tega pri velikosti pelet 600 - 710 µm in 900 - 1000 µm prišlo šele po modifikaciji F kritičnega, pri velikosti pelet 1120 - 1250 µm pa je p vrednost 4,69E-05, kar nazorno kaže na bistveno večjo statistično signifikantno verjetnost vpliva razmika na lokalne hitrosti pelet pri tej velikosti glede na ostali dve. Zadevo potrjuje tudi preglednica interakcij 13, kjer na grafih v tretjem stolpcu vidimo, kako je razlika v lokalnih hitrostih pelet med razmikom 10 mm in 20 mm dejansko prisotna le pri največji velikostni frakciji pelet. To je tudi ozadje interakcij vpliva velikosti pelet na vpliv razmika na lokalne hitrosti

Preglednica 13: Grafi za preučevanje interakcij med razmikom in velikostjo pelet za položaj notranji rob razmejitvenega valja; krivulje predstavljajo razmike (mm)

Interakcije med velikostjo pelet in razmikom za klasično Wursterjevo komoro so z vidika vpliva velikosti pelet na vpliv razmika na lokalne hitrosti pelet, posledica nekoliko bolj izražene odvisnosti manjši razmik - večje lokalne hitrosti pelet pri velikostnem razredu 600 - 710 μ m, v primerjavi z ostalima dvema velikostnima razredoma, in sicer pri vseh treh pretokih (preglednica 13). Npr., če vzamemo pretok 130 m³/h, vidimo, da je pri velikosti 1120 - 1250 μ m razlika v hitrosti pelet med razmikoma 10 in 20 mm okoli 600 mm/s, pri velikosti 600 - 710 μ m pa preko 1000 mm/s. Pretok zraka za fludizacijo ne vpliva na vpliv

razmika na lokalne hitrosti pelet, tako pri klasični Wursterjevi komori, kot pri swirl komori (preglednica 8).

Odvisnost, manjši razmik - večje lokalne hitrost pelet, pri klasični Wursterjevi komori za položaj 10 mm od notranjega roba razmejitvenega valja velja ravno tako, kot pri položaju notranji rob razmejitvenega valja (preglednica 14). Opisani vpliv razmika na hitrosti pelet je statistično signifikanten (preglednici d in f v prilogi). Tudi tu je razlika med razmikoma 20 mm in 25 mm minimalna oziroma nična, ko pa zmanjšamo razmik na 10 mm, se hitrosti pelet močno povečajo. Za swirl komoro pa več ne velja enako kot pri položaju notranji rob razmejitvenega valja. Pri položaju 10 mm od notranjega roba razmejitvenega valja namreč velja, da so lokalne hitrosti pelet pri razmiku 10 mm večje kot pri razmiku 20 mm le pri velikosti 600 - 710 µm. Napisano potrjuje tudi statistična obravnava v preglednici d v prilogi, kjer v tretjem stolpcu vidimo, da je statistično signifikanten vpliv razmika na hitrosti pelet prisoten le pri velikosti 600 - 710 µm. Zanimivo je, da statistična obravnava ni pokazala interakcij med velikostjo pelet in razmikom za swirl komoro pri položaju 10 mm od notranjega roba razmejitvenega valja (preglednica f v prilogi). Na podlagi različnih ugotovitev o vplivu velikosti na vpliv razmika na lokalne hitrosti, pri položaju 10 mm od notranjega roba razmejitvenega valja in položaju notranji rob razmejitvenega valja, za swirl komoro, smo sklenili, da lahko za swirl komoro z gotovostjo trdimo le, da so hitrosti pelet pri razmiku 10 mm bodisi večje bodisi enake kot pri razmiku 20 mm. Kdaj so večje in kdaj enake, pa na podlagi naših podatkov težko rečemo.

Preglednica 14: Vpliv razmika na lokalne hitrosti pelet za položaj 10mm od notranjega roba razmejitvenega valja

Hitrosti so tako pri klasični Wursterjevi komori, kot pri swirl komori, pri vseh treh razmikih večje pri položaju 10 mm od notranjega roba razmejitvenega valja (preglednica 12 in 14). Ugotovljeno potrjuje tudi slika 35, kjer je lepo razvidno, da hitrost peletam narašča s tem, ko se premikamo proti notranjosti razmejitvenega valja. To je pričakovano, kot že opisano v prejšnjem poglavju.

Slika 35: Odvisnost hitrosti pelet od položaja za vse tri razmike (mm), pri fiksnem pretoku zraka za fludizacijo 130 m³/h in velikosti 900 - 1000 μm za klasično Wursterjevo komoro - levo in swirl komoro - desno. Krivulje predstavljajo razmike (mm)

Tudi pri položaju 10 mm od notranjega roba razmejitvenega valja pretok zraka za fludizacijo ne vpliva na vpliv razmika na lokalne hitrosti pelet, tako pri klasični Wursterjevi komori, kot pri swirl komori (preglednica 10). Ravno tako smo ugotovili, da imajo tudi interakcije med razmikom in velikostjo pelet, pri klasični Wursterjevi komori, enako ozadje kot pri položaju notranji rob razmejitvenega valja. Torej, razlika v lokalnih hitrostih pelet med razmiki je najbolj izražena pri velikostni frakciji 600 - 710 μ m (preglednica 15). Npr, če tudi tu vzamemo pretok 130 m³/h, vidimo, da je pri velikosti 1120 - 1250 μ m razlika v hitrosti pelet med razmikoma 10 in 20 mm zopet okoli 600 mm/s, pri velikosti 600 - 710 μ m pa zopet čez 1000 mm/s.

Preglednica 15: Grafi za preučevanje interakcij med razmikom in velikostjo pelet za položaj 10 mm od notranjega roba razmejitvenega valja; krivulje predstavljajo razmike (mm)

4.5 VPLIV VELIKOSTI PELET NA LOKALNE HITROSTI PELET

Hitrosti pelet so, pri klasični Wursterjevi komori, med različnimi velikostnimi razredi, med seboj zelo podobne (preglednica 16). Statistično signifikanten vpliv velikosti pelet na lokalne hitrosti le teh, je prisoten le pri razmiku 10 in 25 mm (preglednica a v prilogi), oziroma le pri pretokih zraka za fludizacijo 130 m³/h in 105 m³/h (preglednica e v prilogi). Ker je statistično signifikanten vpliv velikosti pelet na lokalne hitrosti le teh pri razmiku 25 mm zgolj posledica razlik v lokalnih hitrostih pelet med velikostnimi razredi pri pretoku 105 m³/h in ker te razlike niso zelo velike (pri 600 - 710 μ m 1211 mm/s, pri 900 - 1000 μ m 760 mm/s in pri 1120 - 1250 μ m 867 mm/s), temu vplivu nismo dali velikega pomena. Zaključimo lahko, da je vpliv velikosti pelet na lokalne hitrosti le teh za klasično Wursterjevo komoro zelo kompleksen in je odvisen tako od razmika, kot tudi od pretoka zraka za fludizacijo. Poenostavljen zaključek za klasično Wursterjevo komoro bi bil, da razlik v lokalnih hitrostih pelet med velikosti 600 - 710 μ m in 1120 - 1250 μ m ni. Pelete dosegajo najvišje hitrosti pri velikosti 600 - 710 μ m, vendar zgolj pri razmiku 10 mm in še to je najbolj izrazito pri nižjih pretokih zraka za fludizacijo.

Preglednica 16: Vpliv velikosti na lokalne hitrosti pelet za položaj notranji rob razmejitvenega valja

Zgoraj opisno smo pojasnili na osnovi zakona zračnega upora, kjer izhajamo iz dejstva, da je pospešek (a) pelete definiran kot:

a=F/m, enačba (11)

kjer je m masa pelete in F sila zračnega upora. Sila zračnega upora je odvisna od prečnega preseka delca, masa pa od njegovega volumna. Če predpostavimo, da so pelete povsem okrogli delci, nastopa v enačbi za prečni presek krogle r², kjer je r radij krogle, v enačbi za volumen krogle pa r³. Tako dobimo izraz:

$a=k_1r^2/k_2r^3=k_3/r$ (12)

kjer so k_1 , k_2 in k_3 konstante. Na osnovi enačbe *12* ugotovimo, da je pospešek pri manjših peletah večji. Zato dosegajo manjše pelete v enako hitrem toku zraka na isti razdalji večje hitrosti. Očitno pa se ta zakon izrazi zgolj pri redkejših tokovih pelet, ko je manj trkov med peletami, to pa se zgodi pri razmiku 10 mm.

Pri enakih pogojih pelete velikosti 600 - 710 μ m v Swirl komori, pri razmiku 20 mm dosegajo višje hitrosti kot v klasični Wursterjevi komori, pri razmiku 10 mm pa je ravno obratno. Za druga dva velikostna razreda velja enako. Edina razlika je, da pri razmiku 10 mm, ko je pretok zraka za fludizacijo 105 m³/h večje hitrosti dosegajo pelete v swirl komori (preglednica 16).

Za swirl komoro velja, da velikost pelet vpliva na njihove lokalne hitrosti. Pri razmiku 10 mm dosegajo pelete najvišje hitrosti pri velikosti 1120 - 1250 μ m, med velikostma 900 - 1000 μ m in 600 - 710 μ m pa ni razlik (velikostni razpon za velikost 1120 - 1250 μ m je od 1555 mm/s do 2012 mm/s, za velikost 900 - 1000 μ m od 1250 mm/s do 1836 mm/s in za

velikost 600 - 710 µm od 1372 mm/s do 1694 mm/s). Pri razmiku 20 mm pa dosegajo pelete najvišje lokalne hitrosti pri velikosti 900 - 1000 µm, med velikostma 1120 - 1250 µm in 600 - 710 µm pa ni razlik (velikostni razpon za velikost 900-1000 µm je od 1327 mm/s do 2041 mm/s, za velikost 1120 - 1250 µm od 1267 mm/s do 1488 mm/s in za velikost 600 - 710 µm od 1167 mm/s do 1596 mm/s). V drugem primeru (pri razmik 20 mm) je opisana odvisnost bolj izrazita, kot v prvem (pri razmiku 10 mm) (preglednica 16 in preglednici a in e v prilogi). To je tudi ozadje interakcij v preglednici 13, za swirl komoro. Gre namreč za zgoraj opisani vpliv razmika na vpliv velikosti na lokalne hitrosti pelet. Pretok zraka za fludizacijo pri swirl komori nima vpliva na vpliv velikosti pelet na lokalne hitrosti le teh (preglednica 7).

Interakcije iz preglednice 13, za klasično Wursterjevo komoro z vidika vpliva razmika na vpliv velikosti na lokalne hitrosti pelet, izhajajo iz že prej opisanega, bistveno bolj izrazitega padca lokalnih hitrosti pelet od velikost 600 - 710 μ m proti velikosti 900 - 1000 μ m pri razmiku 10 mm, kot pri drugih dveh razmikih. Ravno tako izhajajo interakcije z vidika vpliva pretoka na vpliv velikostne frakcije pelet na lokalne hitrosti le teh, za klasično Wursterjevo komoro, iz že prej opisanega, bolj izrazitega padca lokalnih hitrosti pelet od velikosti 900 - 1000 μ m, pri pretoku zraka za fludizacijo 105 m³/h, kot pri drugih dveh pretokih (preglednica 7).

Ob pregledu preglednice 17 in statistične obravnave v preglednicah c in f v prilogi smo ugotovili, da je tudi pri položaju 10 mm od notranjega roba razmejitvenega valja, za klasično Wursterjevo komoro, pravilo manjše pelete - večje lokalne hitrosti pelet izražena zgolj pri razmiku 10 mm. To, da je pravilo izraženo zgolj pri razmiku 10 mm, razloži tudi interakcije med razmikom in velikostjo pelet v preglednici 15. Pri položaju 10 mm od roba razmejitvenega valja je pri razmiku 10 mm pravilo manjše pelete - večje lokalne hitrosti pelet celo bolj poudarjeno kot pri položaju notranji rob razmejitvenega valja (razponi hitrosti pelet med velikostnimi frakcijami za vse tri pretoke zraka so pri položaju notranji rob razmejitvenega valja od 769 mm/s do 1527 mm/s, od 1643 mm/s do 2221 mm/s in od 2441 mm/s do 2638 mm/s ter pri položaju 10 mm od notranjega roba razmejitvenega valja od 984 mm/s do 2030 mm/s, od 1948 mm/s do 2609 mm/s in od 2458 mm/s do 3263 mm/s). Razlika v hitrostih pa je pri položaju 10 mm od roba razmejitvenega valja opazna tudi med velikostma 900 - 1000 µm in 1120 - 1250 µm. Statistična obravnava v preglednici c v prilogi je sicer pokazala statistično signifikantno razliko med lokalnimi hitrostmi pelet kot funkcijo velikosti pelet tudi pri razmiku 20 mm, vendar na podlagi preglednice 17 ni moč ugotoviti nobenega izrazitejšega trenda spreminjanja hitrosti pelet s spreminjanjem velikosti pelet pri tem razmiku. Pretok zraka nima vpliva na vpliv velikosti pelet na lokalne hitrosti le teh pri položaju 10 mm od notranjega roba razmejitvenega valja, za klasično Wursterjevo komoro (preglednica 11).

Preglednica 17: Vpliv velikosti na lokalne hitrosti pelet za položaj 10mm od notranjega roba razmejitvenega valja

Pri swirl komori pelete, pri položaju 10 mm od notranjega roba razmejitvenega valja, dosegajo najvišje lokalne hitrosti pri velikosti 900 - 1000 µm, najmanjše pa pri velikosti 600 - 710 µm (preglednica 17). Ta odvisnost je bolj izrazita pri razmiku 20 mm, kot pri razmiku 10 mm. Razpon hitrosti pri velikosti 600 - 710 µm je od 1366 mm/s do 2062 mm/s, medtem ko je pri velikosti 900 - 1000 µm od 1800 mm/s do 2285 mm/s. Na podlagi opisanega tu, pri položaju 10 mm od notranjega roba razmejitvenega valja in tistega pri položaju notranji rob razmejitvenega valja, lahko za swirl komoro z gotovostjo trdimo le, da največje hitrosti dosegajo pelete velikosti 900 - 1000 µm pri razmiku 20 mm, med ostalimi velikostmi oziroma pri drugih pogojih pa ni bistvenih razlik.

Ob primerjavi hitrosti pelet v klasični Wursterjevi komori in swirl komori pri enakih pogojih, za položaj 10 mm od notranjega roba razmejitvenega valja, smo ugotovili enak vzorec kot za položaj notranji rob razmejitvenega valja (preglednica 17).

Hitrosti pelet so tako pri klasični Wursterjevi komori, kot pri swirl komori, pri vseh treh velikostnih razredih večje pri položaju 10 mm od notranjega roba razmejitvenega valja (preglednica 16 in 17). Ugotovljeno potrjuje tudi slika 36, kjer je lepo razvidno, da hitrost peletam narašča, ko se premikamo proti sredini razmejitvenega valja.

Slika 36: Odvisnost hitrosti pelet od položaja za vse tri velikosti (μm), pri fiksnem pretoku zraka za fludizacijo 130 m³/h in razmiku 20 mm za klasično Wursterjevo komoro - levo in swirl komoro - desno. Krivulje predstavljajo velikosti (μm)

4.6 KOTI LETA PELET

Razlika med koti leta pelet med klasično Wursterjevo komoro in swirl komoro obstaja in sicer so koti leta pelet vedno večji pri swirl komori (grafi v preglednicah 69-74 v prilogi). Prišli smo tudi do zaključka, da se pelete pri swirl komori, ne glede na pogoje vedno gibljejo v desno, pri klasični Wursterjevi komori, pa se smer kotov leta pelet spreminja s spreminjanjem pogojev. Obe ugotovitvi, sta posledica različnega načina vpihovanja zraka v komoro. Pri swirl komori zrak pelete zaradi značilnega vijačnega gibanja zraka ponese navzgor po valju pod kotom, vedno v isto smer, medtem, ko paraboličen profil vpihovanja zraka pri klasični Wursterjevi komori pelete ponese navzgor teoretično pod kotom 0°, vendar se kot leta pelet zaradi samih trkov pelet med seboj in ob steno valja naključno spremeni. Zato dobimo smer leta pelet (ponekod povprečje pokaže v levo, ponekod pa v desno) za različne eksperimente različno. Opisano, se vidi že iz zajetih slik, naključni primer je predstavljen na sliki 37, kjer je lepo razvidno, kako pri swirl komori pelete pri klasični Wursterjevi komori manj izraziti in brez trenda določene smeri.

Slika 37: Slikovna primerjava kotov leta pelet med klasično Wursterjevo komoro (levo) in swirl komoro (desno), pri pogojih: razmik 10 mm, pretok zraka za fludizacijo 130 m³/h, velikost pelet 1120 - 1250 μm in položaj notranji rob razmejitvenega valja

Statistično smo s pomočjo enosmernega Studentovega t-testa ($\alpha = 0,05$) primerjali kote leta pelet, med obema komorama pri enakih pogojih, ker predvidevamo odstopanje ene meritve v točno določeno smer (pri swirl komori pelete letijo bolj v desno, kot pri klasični Wursterjevi komori). Studentov t-test smo naredili za 8 različnih kombinacij pogojev, izbranih tako, da zajemajo primere, ko so hitrosti pelet največje in primere, ko so hitrosti pelet najnižje. Rezultati so predstavljeni na slikah od 38 do 45. Vidimo, da je p vrednost v vseh osmih primerih nižja od 0,05, tako da v vseh primerih obstaja statistično signifikantna razlika v kotih leta pelet med komorama.

t-Test: Two-Sam	ole Assuming Equa	al Variances

	wurster	swirl
Mean	-2,39484	-8,7778
Variance	23,32886	76,76158
Observations	20	20
Pooled Variance	50,04522	
Hypothesized Mean Difference	0	
df	38	
t Stat	2,853256	
P(T<=t) one-tail	0,003483	
t Critical one-tail	1,685954	
P(T<=t) two-tail	0,006966	
t Critical two-tail	2,024394	

Slika 38: Studentov t-test pri pogojih: razmik 10 mm, pretok zraka za fludizacijo 156 m³/h, velikost pelet 600 - 710 μ m, notranji rob razmejitvenega valja

t-Test: Two-Sample Assuming Equal Variances				
	wurster	swirl		
Mean	1,209563	-11,9267		
Variance	39,85276	85,94875		
Observations	20	20		
Pooled Variance	62,90076			
Hypothesized Mean Difference	0			
df	38			
t Stat	5,237727			
P(T<=t) one-tail	3,15E-06			
t Critical one-tail	1,685954			
P(T<=t) two-tail	6,3E-06			
t Critical two-tail	2,024394			

Slika 40: Studentov t-test pri pogojih: razmik 10 mm, pretok zraka za fludizacijo 105 m³/h, velikost pelet 600 - 710 μ m, notranji rob razmejitvenega valja

t-Test: Two-Sample Assuming Equal Variances					
	wurster	swirl			
Mean	4,779006	-10,086			
Variance	83,30466	187,8296			
Observations	20	20			
Pooled Variance	135,5672				
Hypothesized Mean Difference	0				
df	38				
t Stat	4,037271				
P(T<=t) one-tail	0,000126				
t Critical one-tail	1,685954				
P(T<=t) two-tail	0,000253				
t Critical two-tail	2,024394				

Slika 39: Studentov t-test pri pogojih: razmik 20 mm, pretok zraka za fludizacijo 156 m³/h, velikost pelet 600 - 710 μ m, notranji rob razmejitvenega valja

t-Test: Two-Sample Assuming Equal Variances					
	wurster	swirl			
Mean	10,35523	-10,086			
Variance	114,2916	187,8296			
Observations	20	20			
Pooled Variance	151,0606				
Hypothesized Mean Difference	0				
df	38				
t Stat	5,259342				
P(T<=t) one-tail	2,95E-06				
t Critical one-tail	1,685954				
P(T<=t) two-tail	5,89E-06				
t Critical two-tail	2,024394				

Slika 41: Studentov t-test pri pogojih: razmik 20 mm, pretok zraka za fludizacijo $105 \text{ m}^3/\text{h}$, velikost pelet 600 - 710 µm, notranji rob razmejitvenega valja

t-Test: Two-Sample Assuming Equal Variances						
	wurster	swirl				
Mean	-2,30817	-8,47868				
Variance	20,76493	131,618				
Observations	20	20				
Pooled Variance	76,19145					
Hypothesized Mean Difference	0					
df	38					
t Stat	2,235464					
P(T<=t) one-tail	0,01567					
t Critical one-tail	1,685954					
P(T<=t) two-tail	0,03134					
t Critical two-tail	2,024394					

Slika 42: Studentov t-test pri pogojih: razmik 10 mm, pretok zraka za fludizacijo 156 m³/h, velikost pelet 1120 - 1250 μ m, notranji rob razmejitvenega valja

t-Test: Two-Sample Assuming Equal Variances						
	wurster	swirl				
Mean	-6,60713	-17,5364				
Variance	321,0538	75,36776				
Observations	20	20				
Pooled Variance	198,2108					
Hypothesized Mean Difference	0					
df	38					
t Stat	2,454861					
P(T<=t) one-tail	0,009392					
t Critical one-tail	1,685954					
P(T<=t) two-tail	0,018784					
t Critical two-tail	2,024394					

Slika 44: Studentov t-test pri pogojih: razmik 10 mm, pretok zraka za fludizacijo 105 m³/h, velikost pelet 1120 - 1250 μ m, notranji rob razmejitvenega valja

t-Test: Two-Sample Assuming Equal Variances						
	wurster	swirl				
Mean	-2,49957	-12,0709				
Variance	33,7551	108,0261				
Observations	20	20				
Pooled Variance	70,89061					
Hypothesized Mean Difference	0					
df	38					
t Stat	3,594831					
P(T<=t) one-tail	0,00046					
t Critical one-tail	1,685954					
P(T<=t) two-tail	0,00092					
t Critical two-tail	2,024394					

Slika 43: Studentov t-test pri pogojih: razmik 20 mm, pretok zraka za fludizacijo 156 m³/h, velikost pelet 1120 - 1250 μm, notranji rob razmejitvenega valja

t-Test: Two-Sample Assuming Equal Variances					
	wurster	swirl			
Mean	-6,15155	-15,4561			
Variance	110,1962	113,2253			
Observations	20	20			
Pooled Variance	111,7108				
Hypothesized Mean Difference	0				
df	38				
t Stat	2,783852				
P(T<=t) one-tail	0,004163				
t Critical one-tail	1,685954				
P(T<=t) two-tail	0,008325				
t Critical two-tail	2,024394				

Slika 45: Studentov t-test pri pogojih: razmik 20 mm, pretok zraka za fludizacijo 105 m³/h, velikost pelet 1120 - 1250 μm, notranji rob razmejitvenega valja

5 SKLEP

V magistrski nalogi smo preučevali vpliv pretoka zraka za fludizacijo, višine razmejitvenega valja od dna komore (razmik), velikosti pelet in položaja od roba razmejitvenega valja na lokalne hitrosti pelet, tako za klasično Wursterjevo komoro, kot za komoro z generatorjem vrtinčenja (swirl komora). Za ugotavljanje lokalnih hitrosti pelet smo uporabili metodo dvojnega osvetljevanja in ustreznost metode za naše meritve z vidika ponovljivosti znotraj serije meritev ter ponovljivosti med serijami meritev tudi dokazali. S pomočjo iste metode smo preučili tudi razlike v kotih leta pelet med klasično Wursterjevo komoro in swirl komoro. Rezultate smo predstavili s pomočjo preglednic in grafično in prišli do naslednjih ugotovitev:

Za klasično Wursterjevo komoro velja:

- Večji kot je pretok zraka za fludizacijo, večje so lokalne hitrosti pelet. Odvisnost je prisotna pri vseh razmikih, najbolj pa je izražena pri razmiku 10 mm.
- Med razmikoma 25 mm in 20 mm ni razlik v lokalnih hitrostih pelet, pri razmiku
 10 mm pa so hitrosti bistveno večje. Odvisnost je najbolj izražena pri velikostni frakciji pelet 600 710 µm.
- Pri razmiku 10 mm velja odvisnost, manjše kot so pelete, večje so lokalne hitrosti pelet. Odvisnost je najbolj izražena pri pretoku zraka za fludizacijo 105 m³/h. Pri razmiku 20 mm med velikostnimi frakcijami pelet ni signifikantnih razlik v lokalnih hitrostih pelet.
- S pomikanjem od roba razmejitvenega valja proti notranjosti (do 15 mm) hitrost pelet raste.

Za komoro z generatorjem vrtinčenja (swirl komora) velja:

- V primerjavi s klasično Wursterjevo komoro so odvisnosti manj izražene in je zato težja interpretacija dobljenih rezultatov. Swirl komora je manj občutljiva na spreminjanje pogojev kot klasična Wursterjeva komora.
- Večji kot je pretok zraka za fludizacijo, večje so lokalne hitrosti pelet.
- Hitrosti pelet so pri razmiku 10 mm večje ali enake kot pri razmiku 20 mm. Pri katerih pogojih so večje in kdaj enake, pa na podlagi naših podatkov težko sklepamo.

- Med velikostnima frakcijama 600 710 μm in 1120 1250 μm ni razlik v lokalnih hitrostih pelet, pri velikosti 900 - 1000 μm pa pelete dosegajo največje hitrosti. Opisano velja za razmik 20 mm. Pri razmiku 10 mm med velikostnimi frakcijami pelet ni razlik v lokalnih hitrostih pelet.
- S pomikanjem od roba razmejitvenega valja proti notranjosti (do 15 mm) hitrost pelet raste.
- Če primerjamo lokalne hitrosti pelet s klasično Wursterjevo komoro pri enakih pogojih, so hitrosti pri swirl komori večje pri razmiku 20 mm, pri razmiku 10 mm pa so večje pri klasični Wursterjevi komori. Edini izjemi sta primera, ko je kombinacija pogojev razmik 10 mm, velikost 900 1000 µm in pretok 105 m³/h, ter razmik 10 mm, velikost 1120 1250 µm in pretok 105 m³/h. Tu so namreč lokalne hitrosti pelet večje pri swirl komori. Na splošno lahko rečemo, da so lokalne hitrosti pelet pri swirl komori večje kot pri klasični Wursterjevi komori, pri pogojih, kjer se dosega nižje hitrosti in obratno, da so hitrosti v swirl komori nižje kot pri klasični Wursterjevi komori, pri pogojih, kjer se dosega višje hitrosti pelet.

Za kote leta pelet velja:

- Koti leta pelet so večji pri swirl komori v primerjavi s klasično Wursterjevo komoro.
- Pri swirl komori pelete vedno letijo v isto smer, kar je posledica usmerjenega vijačnega gibanja zraka znotraj razmejitvenega valja.

6 LITERATURA

1. Patel HP, Patel JK, Patel RR, Patel MP: Pellets: a general overview. International journal of pharma world research 2010: 2-6.

2. Aulton ME: Aulton's Pharmaceutics: The design and manufacture of medicines, tretja izdaja, Churchill Livingstone, Edinburg, 2007: 410-411, 419-421.

3. Punia S, Bala R, Rana AC: Pelletization Techniques: A literature review. International research journal of pharmacy 2012; 3 (3): 43-46.

4. Kumar V, Mishra SK, Lather A, Vikas, Singh R: Multiple unit dosage form – pellet and pelletization techniques: an overview. IJRAP 2011; 2 (1): 121-125.

5. Schmalz D. Predavanje, 19.2.2010, Binzen: The most popular excipients for pellet taste masking and controlled release.

6. Heng PWS, Wong TW, Chan LW: Influence of production variables on the sphericity of melt pellets. Chem. Pharm. Bull. 1999; 48 (3): 420.

7.http://www.basf-chemtrade.de/images/stories/broschueren/PHI/basf_kollicoat.pdf. Dostopano: Maj 2012

8. Chansanroj K. Predavanje, 20.2.2010, Binzen: Enteric coating of pellets.

9. Bhowmik D, Chiranjib B, Niladry G, Chandira M, Jayakar B: Sustained release tabletsan overview. Farmavita.net journal 2009: 2-3

10. Srivastava S, Mishra G: Fluid bed technology: Overview and parameters for process selection. International Journal of Pharmaceutical Sciences and Drug Research 2010; 2(4): 236-246.

11.http://www.cjtech.co.kr/w002%20Factors%20to%20consider%20in%20Fluidbed%20processing.pdf. Dostopano: Oktober 2012

12. Norring Christensen F, Bertelsen P: Qualitative description of the Wurster-based fluidbed coating process. Drug Development and Industrial Pharmacy 1997; 23(5): 451-463.

13. Luštrik M, Dreu R, Šibanc R, Srčič S: Comparative study of the uniformity of coating thickness of pellets coated with a conventional Wurster chamber and a swirl generator-

equipped Wurster chamber. Pharmaceutical Development and Technology 2012; 17 (3): 268–276.

14. Teunou E, Poncelet D: Batch and continuous fluid bed coating – review and state of the art. Journal of Food Engineering 2002; 53: 325–340.

15. Dreu R, Luštrik M, Perpar M, Žun I, Srčič S: Fluid-bed coater modifications and study of their influence on the coating process of pellets. Drug Development and Industrial Pharmacy 2012; 38 (4): 501–511.

16. Heng PWS, Chan CLW, Tang ESK: Use of swirling airflow to enhance coating performance of bottom spray fluid bed coaters. International Journal of Pharmaceutics 2006; 327: 26–35.

17. Mohs G, Gryczka O, Heinrich S, Mörl L: Magnetic monitoring of a single particle in a prismatic spouted bed. Chemical Engineering Science 2009; 64: 4811-4814.

18. Neuwirth J, Antonyuk S, Heinrich S, Jacob M: CFD–DEM study and direct measurement of the granular flow in a rotor granulator. Chemical Engineering Science 2013; 86: 151–154.

19.http://www.accessscience.com/abstract.aspx?id=183800&referURL=http%3a%2f%2fw ww.accessscience.com%2fcontent.aspx%3fid%3d183800. Dostopano: November 2012

20. http://www.wellsve.com/sft503/Counterpoint3_1.pdf. Dostopano: November 2012

21. http://lrt2.fe.uni-lj.si/lrtme/meri_pret/AMR2.pdf. Dostopano: November 2012

22. http://library.thinkquest.org/27948/doppler.html. Dostopano: November 2012

23. Yan Y: Mass flow measurement of bulk solids in pneumatic pipelines. Meas. Sci. Technol. 1996; 7: 1698–1703.

24. http://www.radartutorial.eu/17.bauteile/bt33.en.html. Dostopano: November 2012

25. Fitzpatrick S, Ding Y, Seiler C, Lovegrove C, Booth S, Forster R, Parker D, Seville J: Positron emission particle tracking studies of a Wurster process for coating applications. Pharmaceutical Technology 2003: 70-74.

26. Berruti F, Bi X, Pugsley T: Investigation of the sources of variability in the Wurster coater: Analysis of particle cycle times using PEPT. ECI conference on the 12th international conference on fluidization - New horizons in fluidization engineering, Vancouver 2007: 433-436.

27.http://zvonko.fgg.uni-lj.si/seminarji/radiacijainclovek/radioakt.html.Dostopano: November 2012

28. http://en.wikipedia.org/wiki/Triangulation. Dostopano: November 2012

29. Bakalis S, Cox PW, Wang-Nolan W, Parker D, Fryer PJ: Use of positron-emission particle tracking (PEPT) technique for velocity measurements in model food fluids. Journal of food science 2003; 68: 2684 – 2692.

30. De Jong JF, Odu SO, Van Buijtenen MS, Deen NG, Van Sint Annaland M, Kuipers JAM: Development and validation of a novel digital image analysis method for fluidized bed particle image velocimetry. Powder Technology 2012; 230: 193–194.

31. Grant I: Particle image velocimetry: A review. Proc. Instn. Mech. Engrs. 1997; 211:58, 68.

32. Vezočnik R: Avtomatizacija relativne orientacije stereopara. Diplomska naloga. Fakulteta za gradbeništvo in geodezijo, Ljubljana 2006: 32-33.

33. Praprotnik M. Prepoznavanje premikov iz digitalnih slik za določitev gibanja. Diplomska naloga. Fakulteta za gradbeništvo in geodezijo, Ljubljana 2006: 29.

34. Fries L, Antonyuk S, Heinrich S, Palzer S: DEM–CFD modeling of a fluidized bed spray granulator. Chemical Engineering Science 2011; 66: 2351.

35. Šibanc R, Srčič S, Dreu R: Numerical simulation of two-phase flow in a Wurster coating chamber and comparison with experimental results. Chemical Engineering Science 2013; 99: 225-237.

PRILOGA

ZBIRNE PREGLEDNICE – KASIČNA WURSTERJEVA KOMORA

Preglednica 18: Zbirna preglednica rezultatov 1 (temperatura v laboratoriju 24 ° C, relativna vlažnost 37 %)

razmik	pretok	velikost	položaj	hitrost				T produkta
(mm)	(m^{3}/h)	(µm)	(mm)	(mm/s)	sd (mm/s)	kot (°)	sd (°)	(°C)
20	105	1120-1250	0	1017	283,5	-6,152	10,50	33
			5	1060	229,3	-5,352	10,45	36
			10	1153	143,8	1,739	11,74	34
			15	ni	ni	ni	ni	ni

Preglednica 19: Zbirna preglednica	rezultatov 2 (temperatura	v laboratoriju 24 °C,	relativna vlažnost
37 %)			

razmik	pretok	velikost	položaj	hitrost				T produkta
(mm)	(m^{3}/h)	(µm)	(mm)	(mm/s)	sd (mm/s)	kot (°)	sd (°)	(°C)
20	130	1120-1250	0	1046	158,6	-3,413	6,983	35
			5	1062	189,9	-0,988	12,60	36
			10	1285	285,0	-4,840	8,431	35
			15	ni	ni	ni	ni	ni

Preglednica	20: Zbirna preglednica	rezultatov	3 (temperatura	v laboratoriju 24	°C, relativna	vlažnost
37 %)						

razmik	pretok	velikost	položaj	hitrost				T produkta
(mm)	(m^{3}/h)	(µm)	(mm)	(mm/s)	sd (mm/s)	kot (°)	sd (°)	(°C)
20	156	1120-1250	0	1385	146,0	-2,500	5,810	37
			5	1404	168,1	-1,744	7,194	37
			10	1848	298,5	-2,060	6,479	35
			15	2108	281,9	-1,574	5,870	37

Preglednica 21: Zbirna preglednie	a rezultatov 4 (temperatura	ı v laboratoriju 23 °C,	relativna vlažnost
52 %)			

razmik	pretok	velikost	položaj	hitrost				T produkta
(mm)	(m^{3}/h)	(µm)	(mm)	(mm/s)	sd (mm/s)	kot (°)	sd (°)	(°C)
20	105	600-700	0	961,8	164,1	10,36	10,69	32
			5	1062	303,3	7,308	9,885	34
			10	1120	241,2	2,944	5,137	34
			15	ni	ni	ni	ni	ni

razmik	pretok	velikost	položaj	hitrost				T produkta
(mm)	(m^{3}/h)	(µm)	(mm)	(mm/s)	sd (mm/s)	kot (°)	sd (°)	(°C)
20	130	600-700	0	1044	195,7	6,107	9,900	34
			5	1252	249,3	4,333	7,764	35
			10	1280	254,9	1,984	8,412	36
			15	ni	ni	ni	ni	ni

Preglednica 22: Zbirna preglednica rezultatov 5 (temperatura v laboratoriju 23 °C, relativna vlažnost 52 %)

Preglednica 23: Zbirna preglednica	rezultatov 6 (temperatura	v laboratoriju 23 °C	, relativna vlažnost
52 %)			

razmik	pretok	velikost	položaj	hitrost				T produkta
(mm)	(m^{3}/h)	(µm)	(mm)	(mm/s)	sd (mm/s)	kot (°)	sd (°)	(°C)
20	156	600-700	0	1234	271,8	4,779	9,127	36
			5	1537	294,6	0,589	6,699	37
			10	1638	438,2	3,432	9,277	38
			15	ni	ni	ni	ni	ni

Preglednica 24: Zbirna preglednica rezultatov 7 (temperatura v laboratori	iju 21 °C, relativna vlažnost
34 %)	

razmik	pretok	velikost	položaj	hitrost				T produkta
(mm)	(m^{3}/h)	(µm)	(mm)	(mm/s)	sd (mm/s)	kot (°)	sd (°)	(°C)
20	105	900-1000	0	799,2	165,5	1,311	9,011	34
			5	1247	319,8	-1,407	9,114	35
			10	ni	ni	ni	ni	ni
			15	ni	ni	ni	ni	ni

Preglednica 25: Zbirna preglednica	rezultatov 8 (temperatura	v laboratoriju 21 °	C, relativna vlažnost
34 %)			

razmik	pretok	velikost	položaj	hitrost				T produkta
(mm)	(m^{3}/h)	(µm)	(mm)	(mm/s)	sd (mm/s)	kot (°)	sd (°)	(°C)
20	130	900-1000	0	1025	234,9	3,911	12,20	36
			5	1354	289,3	4,755	9,238	37
			10	1439	251,5	-0,417	10,02	37
			15	ni	ni	ni	ni	ni

Preglednica 2	26: Zbirna preglednica	rezultatov 9 ((temperatura [•]	v laboratoriju 21	°C, relativna	vlažnost
34 %)						

razmik	pretok	velikost	položaj	hitrost				T produkta
(mm)	(m^{3}/h)	(µm)	(mm)	(mm/s)	sd (mm/s)	kot (°)	sd (°)	(°C)
20	156	900-1000	0	1447	394,0	0,515	7,142	38
			5	1941	276,5	5,073	8,182	38
			10	2142	487,7	2,060	8,045	38
			15	ni	ni	ni	ni	ni

razmik	pretok	velikost	položaj	hitrost				T produkta
(mm)	(m^{3}/h)	(µm)	(mm)	(mm/s)	sd (mm/s)	kot (°)	sd (°)	(°C)
25	105	900-1000	0	760,7	192,4	3,896	6,338	33
			5	985,5	280,0	-8,765	8,203	35
			10	1236	326,9	-3,151	9,186	35
			15	1378	289,0	-0,082	9,226	35

Preglednica 27: Zbirna preglednica rezultatov 10 (temperatura v laboratoriju 22 °C, relativna vlažnost 32 %)

Preglednica 28: Zbirna preglednica rezultatov 1	l (temperatura v laboratori	ju 22 °C, relativna vlažnost
32 %)		

razmik	pretok	velikost	položaj	hitrost				T produkta
(mm)	(m^{3}/h)	(µm)	(mm)	(mm/s)	sd (mm/s)	kot (°)	sd (°)	(°C)
25	130	900-1000	0	1169	239,7	1,289	11,20	35
			5	1185	289,3	-1,389	9,323	36
			10	1329	310,9	-0,101	6,099	37
			15	1490	154,0	-0,613	7,900	37

Preglednica 29: Zbirna preglednica rezultatov 12 (temperatura v laboratoriju 22 °C, relativna vlažnost	
32 %)	

razmik	pretok	velikost	položaj	hitrost	1 ()	1 ((0)	1 (0)	T produkta
(mm)	(m ² /h)	(µm)	(mm)	(mm/s)	sd (mm/s)	kot (°)	sd (°)	(°C)
25	156	900-1000	0	1258	312,7	-2,027	9,234	37
			5	1465	305,1	-2,680	8,685	38
			10	1598	473,9	-2,305	9,876	38
			15	1777	458,9	-7,413	11,01	39

Preglednica 30: Zbirna preglednica rezultatov 13 (temperatura v laboratoriju 22 °C, relativna vlažnos	st
34 %)	

razmik (mm)	pretok (m ³ /h)	velikost (µm)	položaj (mm)	hitrost (mm/s)	sd (mm/s)	kot (°)	sd (°)	T produkta (°C)
25	105	1120-1250	0	867,2	240,0	4,594	15,47	34
			5	1074	295,6	3,996	12,30	35
			10	1302	351,8	0,520	11,23	35
			15	ni	ni	ni	ni	ni

Preglednica 31: Zbirna preglednica rezultatov 14 (temperatura v laboratoriju 22 °C, relativna vlažnost
34 %)

razmik	pretok	velikost	položaj	hitrost				T produkta
(mm)	(m^{3}/h)	(µm)	(mm)	(mm/s)	sd (mm/s)	kot (°)	sd (°)	(°C)
25	130	1120-1250	0	1138	239,4	-0,145	6,050	36
			5	1330	330,8	-3,519	8,101	36
			10	1352	336,6	-6,369	9,890	36
			15	1515	345,9	-1,017	11,71	36
razmik	pretok	velikost	položaj	hitrost				T produkta
--------	-------------	-----------	---------	---------	-----------	---------	--------	------------
(mm)	(m^{3}/h)	(µm)	(mm)	(mm/s)	sd (mm/s)	kot (°)	sd (°)	(°C)
25	156	1120-1250	0	1421	416,7	-0,700	7,014	37
			5	1491	327,	-1,615	10,33	38
			10	1654	349,3	0,094	6,289	37
			15	1712	343,4	0,355	7,874	38

Preglednica 32: Zbirna preglednica rezultatov 15 (temperatura v laboratoriju 22 °C, relativna vlažnost 34 %)

Preglednica 33: Zbirna preglednica rezultatov 16 (temperatura v laboratoriju 23 °C, relativna v	lažnost
44 %)	

razmik	pretok	velikost	položaj	hitrost				T produkta
(mm)	(m^{3}/h)	(µm)	(mm)	(mm/s)	sd (mm/s)	kot (°)	sd (°)	(°C)
25	105	600-710	0	1212	267,5	4,856	11,74	35
			5	1730	355,2	3,544	11,58	36
			10	ni	ni	ni	ni	ni
			15	ni	ni	ni	ni	ni

. Preglednica 34: Zbirna preglednica rezultatov 17 (temperatura v laboratoriju 23 °C, relativna vlažnos	t
14 %)	

razmik	pretok	velikost	položaj	hitrost				T produkta
(mm)	(m^{3}/h)	(µm)	(mm)	(mm/s)	sd (mm/s)	kot (°)	sd (°)	(°C)
25	130	600-710	0	1134	345,2	4,468	9,516	37
			5	1835	328,4	1,644	5,225	37
			10	ni	ni	ni	ni	ni
			15	ni	ni	ni	ni	ni

Preglednica 35: Zbirna preglednica rezultatov 18 (temperatura v laboratoriju 23 °C, relativna vlaž	inost
44 %)	

razmik (mm)	pretok (m ³ /h)	velikost (µm)	položaj (mm)	hitrost (mm/s)	sd (mm/s)	kot (°)	sd (°)	T produkta (°C)
25	156	600-710	0	1529	342,2	3,762	9,496	39
			5	1975	353,2	3,088	11,17	39
			10	ni	ni	ni	ni	ni
			15	ni	ni	ni	ni	ni

Preglednica 36: Zbirna preglednica rezultatov 19 (temperatura v laboratoriju 23 °C, relativna vla	žnost
44 %)	

razmik	pretok	velikost	položaj	hitrost				T produkta
(mm)	(m^{3}/h)	(µm)	(mm)	(mm/s)	sd (mm/s)	kot (°)	sd (°)	(°C)
10	105	600-710	0	1527	226,2	1,210	6,313	35
			5	1812	289,0	-3,472	7,343	35
			10	2031	309,0	0,579	7,585	35
			15	ni	ni	ni	ni	ni

razmik	pretok	velikost	položaj	hitrost				T produkta
(mm)	(m^{3}/h)	(µm)	(mm)	(mm/s)	sd (mm/s)	kot (°)	sd (°)	(°C)
10	130	600-710	0	2221	241,1	-2,909	4,136	37
			5	2398	316,8	-3,069	5,333	37
			10	2610	482,0	1,757	10,89	37
			15	ni	ni	ni	ni	ni

Preglednica 37: Zbirna preglednica rezultatov 20 (temperatura v laboratoriju 23 °C, relativna vlažnost 44 %)

Preglednica 38: Zbirna preglednica rezultatov 21 (temperatura v laboratoriju 23 °C, relativna vlažnost 44 %)

razmik	pretok	velikost	položaj	hitrost				T produkta
(mm)	(m^{3}/h)	(µm)	(mm)	(mm/s)	sd (mm/s)	kot (°)	sd (°)	(°C)
10	156	600-710	0	2638	321,2	-2,395	4,830	39
			5	3091	379,7	-2,313	6,278	39
			10	3264	408,0	-2,064	6,439	39
			15	ni	ni	ni	ni	ni

2 Preglednica 39: Zbirna preglednica rezultatov 22 (temperatura v laboratoriju 23 °C, relativna vlažnos	t
17 %)	

razmik	pretok	velikost	položaj	hitrost				T produkta
(mm)	(m^{3}/h)	(µm)	(mm)	(mm/s)	sd (mm/s)	kot (°)	sd (°)	(°C)
10	105	1120-1250	0	769,4	267,0	-6,607	17,92	34
			5	810,3	125,1	-2,596	13,24	35
			10	984,6	251,2	-4,297	15,79	34
			15	ni	ni	ni	ni	ni

Preglednica 40: Zbirna preglednica rezultatov 23 (temperatura v laboratoriju 23 °C, relativna vlaž	nost
<u>47 %)</u>	

razmik (mm)	pretok (m ³ /h)	velikost (µm)	položaj (mm)	hitrost (mm/s)	sd (mm/s)	kot (°)	sd (°)	T produkta (°C)
10	130	1120-1250	0	1643	233,0	-1,158	7,327	36
			5	1815	213,8	-1,582	8,491	37
			10	1948	361,8	-4,234	6,920	37
			15	2051	400,5	1,358	7,042	37

Preglednica 41: Zbirna preglednica rezultatov 24 (temperatura v laboratoriju 23 °C, relativna vlažnost	ļ
47 %)	

razmik	pretok	velikost	položaj	hitrost				T produkta
(mm)	(m^{3}/h)	(µm)	(mm)	(mm/s)	sd (mm/s)	kot (°)	sd (°)	(°C)
10	156	1120-1250	0	2441	223,6	-2,308	4,557	38
			5	2477	182,9	-0,910	5,125	38
			10	2459	237,9	-3,745	3,811	39
			15	2516	245,7	-5,575	8,036	39

razmik (mm)	pretok (m ³ /h)	velikost (µm)	položaj (mm)	hitrost (mm/s)	sd (mm/s)	kot (°)	sd (°)	T produkta (°C)
10	105	900-1000	0	884,7	181,8	-2,956	11,95	33
			5	1273	260,1	-1,908	5,848	35
			10	1666	304,3	-3,088	12,80	35
			15	ni	ni	ni	ni	ni

Preglednica 42: Zbirna preglednica rezultatov 25 (temperatura v laboratoriju 23 °C, relativna vlažnost 47 %)

Preglednica 43: Zbirna preglednica rezultatov 26 (temperatura v laboratoriju 23 °C, relativna vlažnost 47 %)

razmik	pretok	velikost	položaj	hitrost	1 (1 . (()	1(0)	T produkta
(mm)	(m ² /n)	(µm)	(mm)	(mm/s)	sa (mm/s)	KOT (°)	sa (°)	(°C)
10	130	900-1000	0	1938	217,5	-4,426	5,443	35
			5	2052	245,7	-2,038	5,476	37
			10	2132	259,4	-1,523	6,203	37
			15	ni	ni	ni	ni	ni

Preglednica 44: Zbirna preglednica rezultatov 27 (temperatura v laboratoriju 23 °C, relativna vlažnost
47 %)

razmik	pretok	velikost	položaj	hitrost				T produkta
(mm)	(m ³ /h)	(µm)	(mm)	(mm/s)	sd (mm/s)	kot (°)	sd (°)	(°C)
10	156	900-1000	0	2531	211,4	-1,564	5,326	38
			5	2597	315,9	-3,618	4,349	38
			10	2715	310,5	0,319	4,624	38
			15	ni	ni	ni	ni	ni

ZBIRNE PREGLEDNICE – SWIRL KOMORA

reglednica 45: Zbirna preglednica rezultatov 28 (temperatura v laboratoriju 23 °C, relativna vlažnos	t
55 %)	

razmik	pretok	velikost	položaj	hitrost				T produkta
(mm)	(m^{3}/h)	(µm)	(mm)	(mm/s)	sd (mm/s)	koti (°)	sd (°)	(°C)
10	105	900-1000	0	1251	323,5	-18,48	11,50	34
			5	1659	412,5	-20,80	11,68	34
			10	1800	469,7	-19,20	11,50	34
			15	2015	527,2	-6,231	10,13	35

Preglednica 46: Zbirna preglednica rezultatov 29 (temperatura v laboratoriju 23 °C, relativna vlažnos	t
55 %)	

razmik	pretok	velikost	položaj	hitrost				T produkta
(mm)	(m ³ /h)	(µm)	(mm)	(mm/s)	sd (mm/s)	koti (°)	sd (°)	(°C)
10	130	900-1000	0	1837	382,8	-15,10	11,70	36
			5	1860	458,6	-15,78	11,74	36
			10	2286	646,3	-11,54	8,713	37
			15	1980	562,8	-3,481	10,59	37

razmik	pretok	velikost	položaj	hitrost				T produkta
(mm)	(m^{3}/h)	(µm)	(mm)	(mm/s)	sd (mm/s)	koti (°)	sd (°)	(°C)
10	156	900-1000	0	1831	406,0	-10,34	15,26	37
			5	2185	503,3	-15,73	10,30	38
			10	2267	546,0	-10,23	6,798	38
			15	ni	ni	ni	ni	ni

Preglednica 47: Zbirna preglednica rezultatov 30 (temperatura v laboratoriju 23 °C, relativna vlažnost 55 %)

Preglednica 48: Zbirna preglednica rezultatov 31 (temperatura v laboratoriju 22 °C, relativna vlažnost 56 %)

razmik	pretok	velikost	položaj	hitrost				T produkta
(mm)	(m^{3}/h)	(µm)	(mm)	(mm/s)	sd (mm/s)	koti (°)	sd (°)	(°C)
20	105	900-1000	0	1327	362,6	-19,51	10,15	32
			5	1523	317,4	-24,52	12,03	34
			10	1846	441,7	-15,04	11,42	34
			15	2053	694,8	-11,24	10,48	34

Preglednica 49: Zbirna preglednica rezultatov 32 (temperatura v laboratoriju 22 °C, relativna vlažnost	
56 %)	

razmik	pretok	velikost	položaj	hitrost				T produkta
(mm)	(m ³ /h)	(µm)	(mm)	(mm/s)	sd (mm/s)	koti (°)	sd (°)	(°C)
20	130	900-1000	0	1763	339,0	-14,69	7,417	35
			5	1843	338,1	-16,13	13,14	35
			10	2168	440,8	-9,772	9,517	36
			15	2193	565,9	-12,12	8,265	36

Preglednica 50: Zbirna preglednica rezultatov 33 (temperatura v laboratoriju 22 °C, relativna vlaž	nost
56 %)	

razmik (mm)	pretok (m ³ /h)	velikost (µm)	položaj (mm)	hitrost (mm/s)	sd (mm/s)	koti (°)	sd (°)	T produkta (°C)
20	156	900-1000	0	2042	379,5	-10,48	12,67	36
			5	1872	502,7	-10,33	9,823	37
			10	2061	444,9	-9,514	10,37	37
			15	2586	648,4	-9,495	8,878	37

. Preglednica 51: Zbirna preglednica rezultatov 34 (temperatura v laboratoriju 21 °C, relativna vlažno	st
53 %)	

razmik	pretok	velikost	položaj	hitrost				T produkta
(mm)	(m^{3}/h)	(µm)	(mm)	(mm/s)	sd (mm/s)	koti (°)	sd (°)	(°C)
20	105	600-710	0	1168	230,1	-20,53	14,14	33
			5	1395	399,4	-15,55	11,84	34
			10	1367	351,9	-16,92	7,597	34
			15	1448	416,1	-7,724	14,66	34

razmik	pretok	velikost	položaj	hitrost				T produkta
(mm)	(m^{3}/h)	(µm)	(mm)	(mm/s)	sd (mm/s)	koti (°)	sd (°)	(°C)
20	130	600-710	0	1398	360,2	-18,22	9,719	35
			5	1533	330,4	-19,24	11,48	36
			10	1486	416,3	-16,12	11,40	36
			15	1515	538,3	-14,45	8,281	36

Preglednica 52: Zbirna preglednica rezultatov 35 (temperatura v laboratoriju 21 °C, relativna vlažnost 53 %)

Preglednica 53: Zbirna preglednica rezultatov 36 (temperatura v laboratoriju 21 °C, relativna vlažnost 53 %)

razmik	pretok	velikost	položaj	hitrost				T produkta
(mm)	(m^{3}/h)	(µm)	(mm)	(mm/s)	sd (mm/s)	koti (°)	sd (°)	(°C)
20	156	600-710	0	1596	583,8	-10,09	13,71	37
			5	1685	490,8	-20,15	13,41	37
			10	1599	501,1	-19,22	8,941	38
			15	1846	434,2	-11,36	14,22	37

Preglednica 54: Zbirna preglednica rezultatov 37 (temperatura v laboratoriju 22 °C, relativna vlažnos	t
51 %)	

razmik	pretok	velikost	položaj	hitrost				T produkta
(mm)	(m^{3}/h)	(µm)	(mm)	(mm/s)	sd (mm/s)	koti (°)	sd (°)	(°C)
10	105	600-710	0	1373	356,5	-11,93	9,271	33
			5	1409	433,8	-22,78	12,73	34
			10	1583	371,2	-10,92	21,65	34
			15	1705	498,2	-6,977	12,83	35

Preglednica 55: Zbirna preglednica rezultatov 38 (temperatura v laboratoriju 22 $^\circ$	C, relativna	vlažnost
51 %)		

razmik (mm)	pretok (m ³ /h)	velikost (µm)	položaj (mm)	hitrost (mm/s)	sd (mm/s)	koti (°)	sd (°)	T produkta (°C)
10	130	600-710	0	1445	322,1	-13,40	16,47	35
			5	1722	461,4	-11,78	10,39	36
			10	1827	428,1	-13,06	13,57	36
			15	1932	390,6	-11,68	13,65	37

Preglednica 56: Zbirna preglednica rezultatov 39 (temperatura v laboratoriju 2	2 °C, relativna vlažnost
51 %)	

razmik	pretok	velikost	položaj	hitrost				T produkta
(mm)	(m^{3}/h)	(µm)	(mm)	(mm/s)	sd (mm/s)	koti (°)	sd (°)	(°C)
10	156	600-710	0	1694	431,7	-8,778	8,761	37
			5	1787	404,4	-14,34	9,940	37
			10	2063	649,6	-9,353	10,20	37
			15	1998	550,6	-11,08	9,055	37

razmik	pretok	velikost	položaj	hitrost				T produkta
(mm)	(m ³ /h)	(µm)	(mm)	(mm/s)	sd (mm/s)	koti (°)	sd (°)	(°C)
10	105	1120-1250	0	1556	523,1	-17,54	8,681	31
			5	1653	409,8	-11,16	12,61	33
			10	1843	530,3	-10,92	9,892	33
			15	2146	756,1	-7,815	14,62	34

Preglednica 57: Zbirna preglednica rezultatov 40 (temperatura v laboratoriju 20 °C, relativna vlažnost 56 %)

Preglednica 58: Zbirna preglednica rezultatov 41 (temperatura v laboratoriju 20 °C, relativna vlažnost 56 %)

razmik	pretok	velikost	položaj	hitrost				T produkta
(mm)	(m^{3}/h)	(µm)	(mm)	(mm/s)	sd (mm/s)	koti (°)	sd (°)	(°C)
10	130	1120-1250	0	1672	496,8	-13,75	9,728	34
			5	2085	376,0	-13,71	10,17	35
			10	1943	565,3	-11,21	9,393	35
			15	2160	685,7	-9,334	9,310	35

Preglednica 59: Zbirna preglednica rezultatov 42 (temperatura v laboratoriju 20 °C, relativna vlažnost	
56 %)	

razmik	pretok	velikost	položaj	hitrost				T produkta
(mm)	(m ³ /h)	(µm)	(mm)	(mm/s)	sd (mm/s)	koti (°)	sd (°)	(°C)
10	156	1120-1250	0	2012	498,1	-8,479	11,47	36
			5	1996	402,8	-13,57	8,107	36
			10	2184	646,1	-11,51	6,109	36
			15	2222	839,3	-7,133	8,961	36

Preglednica 60: Zbirna preglednica rezultatov 43 (temperatura v laboratoriju 22 °C, relativna vlažno	st
57 %)	

razmik	pretok	velikost	položaj	hitrost	1 ()	1	1.(0)	T produkta
(mm)	(m ³ /h)	(µm)	(mm)	(mm/s)	sd (mm/s)	koti (°)	sd (°)	(°C)
20	105	1120-1250	0	1267	297,4	-15,46	10,64	31
			5	1388	403,8	-8,362	13,06	32
			10	1749	401,0	-9,989	12,34	32
			15	1846	468,2	-8,118	15,03	33

Preglednica 61: Zbirna preglednica rezultatov 44 (temperatura v laboratoriju 22 °	C, relativna vlažnost
57 %)	

razmik	pretok	velikost	položaj	hitrost				T produkta
(mm)	(m^{3}/h)	(µm)	(mm)	(mm/s)	sd (mm/s)	koti (°)	sd (°)	(°C)
20	130	1120-1250	0	1447	445,1	-15,64	12,90	34
			5	1637	373,4	-7,137	13,51	34
			10	1828	513,8	-8,799	8,307	34
			15	1975	554,4	-10,02	11,92	35

razmik	pretok (m^{3}/h)	velikost	položaj	hitrost	ed (mm/e)	koti (°)	ed (°)	T produkta $(^{\circ}C)$
(IIIII)	(111 / 11)	(μπ)	(IIIII)	(11111/8)	su (mm/s)	KOU ()	su ()	(\mathbf{C})
20	156	1120-1250	0	1488	381,5	-12,07	10,40	36
			5	1764	374,2	-11,00	8,016	36
			10	1858	537,6	-13,11	13,97	36
			15	1839	551,3	-10,04	12,32	36

Preglednica 62: Zbirna preglednica rezultatov 45 (temperatura v laboratoriju 22 °C, relativna vlažnost 57 %)

Opis izvedbe Levenovega testa z uporabo povprečne vrednosti in modifikacije F kritičnega pri eno-faktorski ANOVI

	А	В	С	D	E	F	G	Н
1	1	2	3		absolutni	reziduali		
2	1075,99	1007,53	861,935		1	2	3	
3	1047,9	1262,67	1145,35		91,4145	145,2025	440,5206	
4	701,501	1250,97	822,114		63,3245	109,9376	157,1056	
5	1073,04	1157,55	1333,36		283,0745	98,23755	480,3416	
6	855,523	1228,15	1668,69		88,4645	4,81755	30,90445	
7	511,858	1292,43	1261,58		129,0525	75,41755	366,2345	
8	1226,04	1139,9	1024,76		472,7175	139,6976	40,87555	
9	771,799	1013,71	1621,88		241,4645	12,83245	277,6956	
10	705,967	1304,67	1545,39		212,7765	139,0225	319,4245	
11	685,268	965,37	2121,37		278,6085	151,9376	242,9345	
12	1258,28	985,3	1079,15		299,3075	187,3625	818,9145	
13	705,799	1005,05	1231,04		273,7045	167,4325	223,3056	
14	1013,08	1170,59	1109,7		278,7765	147,6825	71,41555	
15	1164,06	864,289	1240,61		28,5045	17,85755	192,7556	
16	1334,13	1333,42	1051,31		179,4845	288,4435	61,84555	
17	807,285	1331,48	1884,44		349,5545	180,6876	251,1456	
18	1412,43	1367,8	1473,3		177,2905	178,7476	581,9845	
19	1192,79	1139,06	1265,5		427,8545	215,0676	170,8445	
20	1127,33	1104,03	777,312		208,2145	13,67245	36,95555	
21	1021,44	1130,68	1530,32		142,7545	48,70245	525,1436	
22					36,8645	22,05245	227,8645	
23	984,5755	1152,732	1302,456					
24								
25	Anova: S	ingle Facto	or					
26								
27	SUMMA	RY						
28	Gro	oups	Count	Sum	Average	Variance		
29		1	20	4263,208	213,1604	15258,32		
30		2	20	2344,811	117,2406	6214,836		
31		3	20	5518,211	275,9106	43602,67		
32								
33								
34	ANOVA							
35	Source of	f Variation	SS	df	MS	F	P-value	F crit
36	Betweer	n Groups	255429,1	2	127714,6	5,88765	0,004738	3,158843
37	Within G	iroups	1236441	57	21691,94			
38								
39	Total		1491870	59				

Slika 46: Prikaz izvedbe Levenovega testa z uporabo povprečne vrednosti za eno-faktorsko ANOVO

Levenov test z uporabo povprečne vrednosti se uporablja za ugotavljanje enakosti varianc med različnimi populacijami. Izvajamo ga zato, ker je enakost varianc ena izmed predpostavk ANOVE in je v nasprotnem primeru potrebna modifikacija vrednosti F kritičnega. Pri Levenovem testu z uporabo povprečne vrednosti sprva izračunamo povprečja posameznih stolpcev (v naših primerih bodisi rezultati meritev posameznega eksperimenta ali pa pri ponovljivosti rezultati meritev večkratne analize istega eksperimenta) na katerih bomo kasneje izvedli ANOVO (na sliki 46, v predelu levo zgoraj, je to lepo vidno, npr. povprečje od A2 do A21 je podano na A23, ravno tako sta povprečji za drugi in tretji stolpec podani na B23 in C23). Nato izračunamo absolutne reziduale, tako da vsako vrednost v posameznem stolpcu odštejemo od povprečja stolpca in morebitni negativni predznak izpustimo. Dobimo nove stolpce z enakim številom vrednosti, kakor je prikazano na sliki 46 v predelu desno zgoraj (npr. na polju E3 je absolutna vrednost razlike med vrednostjo na polju A23 in vrednostjo na polju A2). Sledi izvedba enofaktorske ANOVE s stolpci izračunanih absolutnih rezidualov (spodaj na sliki 46). Če je p vrednost manjša od 0,05, potem so si variance prvotnih stolpcev analiz na katerih bomo kasneje izvedli ANOVO (na sliki 46, v predelu levo zgoraj) različne in je potrebna kasnejša modifikacija F kritičnega, kot v primeru na sliki 46, v nasprotnem primeru modifikacija ni potrebna.

	А	В	С	D	E	F	G	Н	- I	J	K	L
1	1075,99	1007,53	861,935			Anova: Single Facto	r					
2	1047,9	1262,67	1145,35									
3	701,501	1250,97	822,114			SUMMARY						
4	1073,04	1157,55	1333,36			Groups	Count	Sum	Average	Variance		
5	855,523	1228,15	1668,69			Column 1	20	19691,51	984,5755	63087,12		
6	511,858	1292,43	1261,58			Column 2	20	23054,65	1152,732	20683,62		
7	1226,04	1139,9	1024,76			Column 3	20	26049,11	1302,456	123736		
8	771,799	1013,71	1621,88									
9	705,967	1304,67	1545,39									
10	685,268	965,37	2121,37			ANOVA						
11	1258,28	985,3	1079,15			Source of Variation	SS	df	MS	F	P-value	F crit
12	705,799	1005,05	1231,04			gap	1011609,951	2	505805	7,312606	0,00149	3,158843
13	1013,08	1170,59	1109,7			Within Groups	3942627,62	57	69168,91			
14	1164,06	864,289	1240,61							modifikac	ija F crit	3,225684
15	1334,13	1333,42	1051,31			Total	4954237,572	59				
16	807,285	1331,48	1884,44									
17	1412,43	1367,8	1473,3	m-ji	df							
18	1192,79	1139,06	1265,5	0,304024	41,49029	3,225684						
19	1127,33	1104,03	777,312	0,099677								
20	1021,44	1130,68	1530,32	0,596299								

Slika 47: Prikaz izpisa eno-faktorske ANOVE in kasnejše izvedbe modifikacije F kritičnega

Na sliki 47 vidimo izvedbo eno-faktorske ANOVE za isti primer kot na sliki 46. Ker smo predhodno s pomočjo Levenovega testa z uporabo povprečne vrednosti ugotovili, da je potrebna modifikacija F kritičnega, bomo sedaj opisali, kako smo to izvedli. Sprva se izračuna m vrednosti po enačbi *13*:

$$m_j = \frac{\left(1 - \frac{n_j}{n}\right)s_j^2}{\sum_j \left(1 - \frac{n_j}{n}\right)s_j^2} \tag{13}$$

Kjer je n število vseh vrednosti v vseh stolpcih (na sliki 47 od A1 do C20), n_j število vseh vrednosti v posameznem stolpcu, za katerega računamo m vrednost, s_j^2 pa varianca posameznega stolpca, za katerega računamo m vrednost. Na sliki 47 je na polju D18 m vrednost za prvi stolpec (izračun po enačbi: ((1-(20/60))*J5)/(((1-(20/60))*J5)+((1-(20/60))*J6)+((1-(20/60))*J7)), na polju D19 za drugi in na polju D20 za tretji stolpec. Nato se izračuna novo stopnjo prostosti (df) po enačbi *14*:

$$df = \frac{1}{\sum_{j} \left(\frac{m_j^2}{n_j - 1}\right)}$$
(14)

Za naš primer na sliki 47 je na polju E18 (1/((D18^2/19)+(D19^2/19)+(D20^2/19))). Sledi še določitev modificirane vrednosti F kritičen na osnovi novih stopenj prostosti Fcrit (k-1; df), kjer je k število stolpcev. Za naš primer na sliki 47 je Fcrit (2; 41,49029), kar znaša 3,225684 in je na polju L14. Vidimo, da je novi F kritičen še vedno manjši od F eksperimentalnega (na sliki 47 na polju J12), kar pomeni, da so si meritve v treh stolpcih med seboj statistično signifikantno različne s 95 % verjetnostjo.

Opis izpisa dvo-faktorske ANOVE

Pri dvo-faktorski ANOVI ugotavljamo ali je vpliv dveh spremenljivk (v našem vzorčnem primeru, na sliki 48, za velikost pelet in razmik), ki zajemata vsaka svojo zalogo vrednosti, (v našem vzorčnem primeru vsaka po tri; velikosti: 600 - 710 µm; 900 - 1000 µm; 1120 - 1250 µm in razmiki: 10 mm; 20 mm; 25 mm) na našo preiskovano, odzivno spremenljivko (v naših primerih lokalna hitrost pelet) statistično signifikantno značilen z določeno verjetnostjo (v naših primerih vedno 95 %). Kot prikazano na sliki 48 nam izpis dvo-faktorske ANOVE poda ločeno vpliv prve spremenljivke (na sliki 48, v tretji vrstici izpisa - velikost), vpliv druge spremenljivke (na sliki 48, v četrti vrstici izpisa - razmik) in interakcijo (na sliki 48, v peti vrstici izpisa - interakcija). Kot vidimo na sliki 48 je tako vpliv velikosti kot razmika, na lokalne hitrosti pelet, statistično signifikantno značilen s 95 % verjetnostjo (p vrednost pod 0,05). Tudi interakcija je statistično signifikantno značilna s 95 % verjetnostjo. To pomeni, da s 95 % verjetnostjo ena izmed spremenljivk vpliva na vpliv druge (v primeru iz slike 48 bodisi velikost na vpliv razmika ali razmik na vpliv velikosti, lahko pa tudi oboje hkrati) na preiskovano, odzivno spremenljivko.

ANOVA						
Source of Variation	SS	df	MS	F	P-value	F crit
velikost	1090544	2	545271,8	9,069969	0,00018	3,048833
razmik	28678953	2	14339477	238,5207	3,38E-50	3,048833
interakcija	2266092	4	566522,9	9,423457	6,59E-07	2,424502
Within	10280241	171	60118,37			
Total	42315830	179				

Slika 48: Primer izpisa dvo-faktorske ANOVE

Interakcijo med spremenljivkama se da lepo ponazoriti z izrisom grafa, kot prikazano na sliki 49. Če so krivulje na grafu vzporedne, interakcija ni prisotna, v nasprotnem primeru je. Če pogledamo sliko 49 vidimo, da je vpliv razmika na lokalne hitrosti pelet neodvisen od velikosti pelet, kajti pri vseh treh velikostih je vzorec enak: pri razmiku 10 mm je hitrost najvišja in nato pade, razlike med razmikoma 20 in 25 mm na vpliv hitrosti pa praktično ni. Drugače pa je, če gledamo vpliv velikosti pelet na lokalne hitrosti le teh. Vidimo, da je sprememba lokalnih hitrosti pelet v odvisnosti od velikosti prisotna le pri razmiku 10 mm, pri drugih razmikih pa velikost pelet ne vpliva na hitrosti le teh. Vidimo, da se tu natančneje skriva vzrok interakcije. Če pa bi bila modra krivulja vzporedna zeleni in rdeči, interakcije ne bi bilo, kajti pri vseh razmikih bi bil vpliv velikosti pelet na hitrost le teh, enak.

Slika 49: Graf, izrisan na osnovi istih podatkov na katerih je bila opravljena dvo-faktorska ANOVA na sliki 48, iz katerega se da lepo razbrati ozadje interakcije pri ANOVI

Opis izvedbe Levenovega testa z uporabo povprečne vrednosti in modifikacije F kritičnega pri dvo-faktorski ANOVI

12	A	8	C .	D	E	F	6	H	. J		. K.	L
-4		10	20	25			1	2	3	- 4	5	6
5	600	2179,67	914,117	856,061			713,4281	533,961	491,1265	245,5448	124,2959	290,7254
6		2578.2	843,419	968,909			1111,958	572,681	80,24355	644,0748	194,9939	177,8774
7		2209,07	897,37	657,211			742,8281	805,751	165,3065	274,9445	141,0429	489,5754
.8		2665,49	1094,11	1091.2			1199,248	771.371	111,3165	731,3648	55,6971	55,58637
9		2313,39	1010,61	806,001			847,1481	133,451	722,6365	379,2648	27,8029	340,7854
10		2108,19	1325,13	1157,33			641,9481	431,041	731,6365	174,0648	286,7171	10,54363
11		2237,94	1184,37	806,242			771,6981	263,351	288,3765	303,8148	145,9571	340,5444
12		2171,95	901,275	902,437			705,7081	663,361	377,8365	237,8248	137,1379	244,3494
13		2377,42	862,634	1279,32			911,1781	388,201	317,8265	443,2948	175,7789	132,5336
14		2533,45	1247,47	1218,42			1067,208	892,391	80,16645	599,3248	209,0571	71,63363
15		2407,55	1240,92	1545,29			941,3081	501,351	348,7665	473,4248	202,5071	398,5036
16		1741.3	1240,92	1440,06			275,0581	743,151	321,5365	192,8252	202,5071	293,2736
17		2241,03	1187,05	833,881			774,7881	700,551	275,8165	306,9048	148,6371	312,9054
18		2227,92	619,994	1241,29			761,6781	577,051	751,6865	293,7948	418,4189	94,50363
19		2283,42	1214,5	1371,8			817,1781	491,881	542,4465	349,2948	176,0871	225,0136
20		1695,65	733,101	1778,83			229,4081	795,041	717,2165	238,4752	305.3119	632,0436
21		2127,87	1137,48	1793,02			661,6281	169,011	426,8465	193,7448	99,0671	646,2336
22		2052,2	1231,23	903,179			585,9581	488,401	246,0365	118,0748	192,8171	243,6074
23		2003,35	995,579	638,914			537,1081	826,201	204,3265	69,22483	42,8339	507,8724
24		2265,59	998,34	1384,85	1466,242		799,3481	462,231	314,0965	331,4648	40,0729	238,0636
25	900	1911.34	990,837	1202,21			552,1249	386,522	275,4036	22,78517	47,5759	55,42363
26		1950,04	946,404	1785,23			622,8229	430,955	246,0436	15,91483	92,0089	638,4436
27		2183,11	960,427	1616,57			568,8719	416.932	21,93645	248,9848	77,9859	469,7836
28		2148,73	1187,65	1401,09			372,1319	189,709	306,4656	214,6048	149.2371	254,3036
29		1510,81	1122,19	989,581			455,6319	255,169	75,58355	423,3152	83,7771	157,2054
30		1808,4	1076,82	1080,39			141,1119	300,539	18,85355	125,7252	38,4071	66,39637
31		1640,71	687,263	B07,411			281,8719	690,096	30,10355	293,4152	351,1499	339,3754
32		2040,72	837,969	1157,34			564,9669	\$39,39	292,4196	106,5948	200,4439	10,55363
33		1765,56	1435,33	1310,74			603,6079	57,97102	617,4116	168,5652	396,9171	163,9536
34		2269,75	1454,78	830,045			218,7719	77,42102	159,6336	335,6248	416,3671	316,7414
35		1878,71	940,115	1565,81			225,3219	437,244	444,7196	55,41517	98,2979	419,0236
36		2120,51	545,88	1234,81			225,3219	831,479	114,4336	186,3848	492,5329	88.02363
37		2077,91	1090.9	1358,13			279,1919	286,459	247,3136	143,7848	52,4871	211,3436
38		1954,41	1016,52	754,482			846,2479	360,839	349,8186	20,28483	21,8929	392,3044
39		1869,24	918,572	730,067			251,7419	458,787	237,5636	64,88517	119,8409	416,7194
40		2172,4	711,115	1352,92			733,1409	666,244	350,1096	238,2748	327,2979	206,1336
41		1540,37	1098,57	891,573			328,7619	278,789	72,95355	387,7552	60,1571	255,2134
42		1865,76	1276,52	1066,78			235,0119	100,839	363,4930	68,36517	238,1071	80,00637
43		2203,56	922,368	1194,21			470,6629	454,771	147,9050	209,4348	115,8249	47,42505
44		1839,59	1282,03	1051,44	1377,359		407,9019	94,72898	204,0030	94,33317	244,2171	90,34637
45	1120	1766,85	1000,32	1307,44			610,1809	175,149	31,71645	167,2752	38,0929	160,6536
46		1195,48	1029,68	983,977			497,3329	407,871	291,7466	738,6452	8,7329	162,8094
47		1441,03	1297,66	1090,42			\$09,0309	239,211	185,3036	493,0952	259,2471	56,36637
48		1387,04	969,258	1249,48			375,0419	23,73102	26,24355	547,0852	69,1549	102,6936
49		1998,30	1200,14	.986,43			660,2409	587,778	289,2936	64,25485	161,7271	160,3364
50		2007,36	1256,87	1197,75			305,9119	296,969	77,97355	73,23483	218,4571	30,96363
51		1564,1	1245,62	1541,23			639,9999	369,948	265,5065	370,0252	207,2071	394,4430
52		1633,30	983,304	1048,13			563,8049	220,019	227,5936	280,5652	35,1089	98,69637
23		1355.00	1114 00	1196.02			100,9219	617 014	27,10330	694 3363	350,2009	11 13000
24		1634.40	831 004	1130,41			297,0219	199 454	130 4444	310,2332	202 4080	368 6034
22		1020,49	1161.30	0.12 1.10			73,0401	143 540	430 6364	909,0302	133 4721	208,0030
20		1551 54	1008.01	5361.40			433 3600	10 33800	448,3736	300,0002	10.0010	101 2026
50		3037.41	036 605	772 163			234 0510	433.42090	603 6314	992,29922	112 5020	273 4341
10		1010 17	1020 14	869 679			64 4410	647.303	406 1146	115 0553	0.3530	373,0396
55		1993.04	935 414	807,009			312 5003	34 42404	400,1140	58 91493	112 7000	219 55.14
63		1703 57	1303 77	1590 6			336 7791	195 704	304 9745	325 5553	164 3571	433 8134
63		1571 74	012 320	000 44			\$63.0639	210 570	397 0636	412 2652	136 1840	350 1361
62		1480.05	1127 77	1414 64			827 2379	182 149	138 9144	454 0753	89 3571	367 9534
64		1589.83	1011 67	1095.3	1275 734		81 2010	325 919	180,4234	344 2052	26 7429	51 48637
65		49497,94	Ave	40000/10			04,0740	*******	1000-02.00	and and a		
66		1934.125	1038.413	1146.786								
		and a stranged										

Slika 50: Prikaz izvedbe Levenovega testa z uporabo povprečne vrednosti za dvo-faktorsko ANOVO (prvi del)

V primeru na sliki 50 imamo podatke na levi strani slike nanizane tako, kot Excel zahteva za izvedbo dvo-faktorske ANOVE. Vidimo, da imamo podatke za devet različnih eksperimentov in sicer podatke za lokalne hitrosti pelet v odvisnosti od razmikov (10 mm,

20 mm in 25 mm) in velikosti (600 - 710 μ m, 900 - 1000 μ m in 1120 - 1250 μ m). Tu se podatke za Levenov test z uporabo povprečne vrednosti vzame nekoliko drugače in sicer enako, kot jih grupira dvo-faktorska ANOVA. Sprva se izračuna povprečja stolpcev (na sliki 50 predstavlja polje B66 povprečje vrednosti od B5 do B64, enako polje C66 za drugi in polje D66 za tretji stolpec), kar predstavlja vse podatke, kjer je ena izmed spremenljivk razmika fiksna, npr. na sliki 50 za polja od B5 do B64 razmik 10 mm. Nato se izračuna še povprečja, ko je ena izmed spremenljivk velikosti fiksna. Tako na sliki 50 predstavlja polje E24 povprečje vseh vrednosti, ko je fiksna velikost pelet 600 - 710 μ m, se pravi polj (B5 do B24) + (C5 do C24) + (D5 do D24). Tako dobimo vse skupaj šest povprečji iz katerih nato s podatki iz katerih je posamezno povprečje pridobljeno izračunamo absolutne reziduale (na sliki 50 desno). Iz šestih tako dobljenih stolpcev naredimo eno-faktorsko ANOVO, kar predstavlja slika 51. Tu se gleda dobljene rezultate, kot opisano pri opisu izvedbe Levenovega testa z uporabo povprečne vrednosti pri eno-faktorski ANOVI. Iz slike 51 vidimo, da bo v našem primeru potrebna modifikacija F kritičnega pri dvofaktorski ANOVI (p vrednost je pod 0,05).

Anova: Single Factor	r					
Allo tarolligic Factor						
SUMMARY						
Groups	Count	Sum	Average	Variance		
1	60	31628,45	527,1409	77878,39		
2	60	24410,21	406,8369	55721,86		
3	60	16675,24	277,9207	35675,45		
4	60	16477,81	274,6302	31285,54		
5	60	9399,263	156,6544	13338,78		
6	60	14384,64	239,744	26401,23		
ANOVA						
Source of Variation	SS	df	MS	F	P-value	F crit
Between Groups	5230250	5	1046050	26,11847	1,86E-22	2,239486
Within Groups	14177773	354	40050,21			
Total	19408023	359				

Slika 51: Prikaz izvedbe Levenovega testa z uporabo povprečne vrednosti za dvo-faktorsko ANOVO (drugi del)

Modifikacija F kritičnega pri dvo-faktorski ANOVI (za naš primer iz slike 50 je prikaz izpisa dvo-faktorske ANOVE na sliki 52) poteka tako, da se najprej izračuna g vrednost po enačbi *15*:

$$g = \sum_{j} \sum_{i} s_{ij}^2 \tag{15}$$

Kjer je s $_{ij}^{2}$ varianca meritev za določen eksperiment, npr. na sliki 50 varianca vrednosti od B5 do B24. Za naš primer je g izračunan na sliki 52 na polju A42 (B11+C11+D11+B17+C17+D17+B23+C23+D23). Nato se določi novo stopnjo prostosti (df) po enačbi *16*:

$$df = \frac{n-1}{\sum_j \sum_i (s_{ij}^2/g)^2}$$
(16)

Za naš primer je df izračunan na sliki 52 na polju B42 (179/((B11/A42)^2+(C11/A42)^2+(D11/A42)^2+(B17/A42)^2+(C17/A42)^2+(D17/A42)^2+(B23/A42)^2+(C23/A42)^2+(D23/A42)^2)). Sledi izračun ndf (na sliki 52 na polju C42), ker so nove stopnje prostosti definirane kot Fcrit (ndf; df). Za naš primer je torej Fcrit (244195,2; 1356,64), kar znaša 1,066643 in je prikazano na polju G38 na sliki 52. Modifikacija F kritičnega velja za vse tri preiskovane spremenljivke (npr. v primeru na sliki 52 za velikost, razmik in tudi za interakcijo).

	A	В	С	D	E	F	G
4	Anova: Two-Factor Wi	th Replicat	tion				
5							
6	SUMMARY	10	20	25	Total		
7	600						
8	Count	20	20	20	60		
9	Sum	44420,65	20879,62	22674,25	87974,51		
10	Average	2221,033	1043,981	1133,712	1466,242		
11	Variance	58149,38	38283,23	119130,2	360465,7		
12							
13	900						
14	Count	20	20	20	60		
15	Sum	38757,63	20503,08	23380,83	82641,54		
16	Average	1937,882	1025,154	1169,041	1377,359		
17	Variance	47289,22	55199,55	86246,15	224043,5		
18							
19	1120						
20	Count	20	20	20	60		
21	Sum	32869,23	20922,08	22752,11	76543,41		
22	Average	1643,462	1046,104	1137,605	1275,724		
23	Variance	54290,06	25154,31	57323,28	114224,5		
24							
25	Total						
26	Count	60	60	60			
27	Sum	116047,5	62304,77	68807,18			
28	Average	1934,125	1038,413	1146,786			
29	Variance	107985,6	38295,32	84852,58			
30							
31							
32	ANOVA						
33	Source of Variation	SS	df	MS	F	P-value	F crit
34	velikost	1090544	2	545271,8	9,069969	0,00018	3,048832572
35	razmik	28678953	2	14339477	238,5207	3,38E-50	3,048832572
36	interakcija	2266092	4	566522,9	9,423457	6,59E-07	2,424502211
37	Within	10280241	171	60118,37			
38					modifikaci	ja F crit	1,066643
39	Total	42315830	179				
40							
41	g	df	nxdf				
42	541065,3336	1356,64	244195,2				

Slika 52: Prikaz izpisa dvo-faktorske ANOVE in kasnejše izvedbe modifikacije F kritičnega

PREGLEDNICE - ANOVA

Preglednica 63: Izpisi dvo-faktorskih analiz variance za ugotavljanje statistično signifikantnega vpliva velikosti pelet in pretoka zraka za fludizacijo na lokalne hitrosti pelet, ter interakcij med omenjenima spremenljivkama pri različnih razmikih, za položaj notranji rob razmejitvenega valja

	CW							SW						
10	ANOVA							ANOVA						
10	Source of Variation	SS	df	MS	F	P-value	F crit	Source of Variation	SS	df	MS	F	P-value	F crit
	velikost	8141508	2	4070754	71,40857	2,85E-23	3,048833	velikost	1770907	2	885453.6	4,948008	0.008147	3.048833
mm	pretok	66138091	2	33069046	580,0924	6,29E-77	3,048833	pretok	6186062	2	3093031	17,28418	1.46F-07	3.048833
	interakcija	2249096	4	562274	9,863328	3,33E-07	2,424502	interakcija	1728481	- 4	432120.3	2 414734	0.050774	2 424502
	Within	9748115	171	57006,52				Within	30600712	171	178951 5	2,4247.54	0,000774	2,424502
					modifikac	ija F crit	1,064337	within	30000712	1/1	170551,5	modifikar	iia E crit	ni
	Total	86276810	179					Total	40396163	170		mounikac	ijar circ	
								Total	40200105	115				
					1									
20	ANOVA							ANOVA						
_	Source of Variation	SS	df	MS	F	P-value	F crit	Source of Variation	SS	df	MS	F	P-value	F crit
	velikost	169377	2	84688,5	1,513071	0,223166	3,048833	velikost	4015213	2	2007607	13,42252	3,85E-06	3,048833
mm	pretok	5950410	2	2975205	53,15594	1,12E-18	3,048833	pretok	6323251	2	3161626	21,1381	6,26E-09	3,048833
	interakcija	833076	4	208269	3,720999	0,006246	2,424502	interakcija	1259020	4	314754,9	2,104399	0,082349	2,424502
	within	9571085	1/1	55971,26		the F and A	4.070447	Within	25576468	171	149570			
	Total	16500049	170		тосітікас	ija E crit	1,076117					modifikac	ija F crit	1,068981
	Total	16523948	1/9					Total	37173952	179				
25	ANOVA													
25	Source of Variation	SS	df	MS	F	P-value	F crit							
	velikost	1621514	2	810756,8	8,927265	0,000205	3,048833							
mm	pretok	6270989	2	3135494	34,52501	2,54E-13	3,048833							
	interakcija	1363430	4	340857,5	3,753191	0,005928	2,424502							
	Within	15529887	171	90818,05										
					modifikac	ija F crit	ni							
	Total	24785820	179					111						

Preglednica b: Izpisi dvo-faktorskih analiz variance za ugotavljanje statistično signifikantnega vpliva razmika in pretoka zraka za fludizacijo na lokalne hitrosti pelet, ter interakcij med omenjenima spremenljivkama pri različnih velikostih, za položaj notranji rob razmejitvenega valja

	CW							SW						
600 -	ANOVA							ANOVA						
000 -	Source of Variation	SS	df	MS	F	P-value	F crit	Source of Variation	SS	df	MS	F	P-value	F crit
- 1 0	gap	36925258	2	18462629	252,0368	1,03E-51	3,048833	pretok	2848131	2	1424066	9,08186	0,000219	3,075853
710	pretok	9739253	2	4869627	66,47617	4,38E-22	3,048833	gap	410929,7	1	410929,7	2,62067	0,108243	3,92433
	interakcija	5396400	4	1349100	18,41681	1,33E-12	2,424502	interakcija	129404,8	2	64702,42	0,412634	0,662889	3,075853
	Within	12526385	171	73253,71				Within	17875578	114	156803,3			
μm					modifikac	ija F crit	1,066617					modifikad	ija F crit	1,109798
	Total	64587296	179					Total	21264043	119				
900 -	ANOVA Source of Variation	SS	df	MS	F	P-value	F crit	ANOVA Source of Variation	SS	df	MS	F	P-value	F crit
	gap	20075721	2	10037860	154,7103	4,39E-3	9 3,048833	pretok	9310557	2	4655279	34,26687	2,22E-12	3,075853
1000	pretok	26351384	2	13175692	203,0727	6,78E-4	5 3,048833	gap	151157,7	1	151157,7	1,112651	0,293737	3,92433
	interakcija	8597131	4	2149283	33,12621	1,9E-20	2,424502	interakcija	403480,1	2	201740	1,484981	0,230855	3,075853
	Within	11094760	171	64881,64				Within	15487315	114	135853,6			
μm					modifika	cija F crit	1,071642					modifikaci	ja F crit	1,09523
	Total	66118995	179)				Total	25352510	119				
1120	ANOVA							ANOVA						
1120	Source of Variation	SS	df	MS	F	P-value	F crit	Source of Variation	SS	df	MS	F	P-value	F crit
	gap	8920888	2	4460444	67,93195	1,94E-22	3,048833	pretok	2309263	2	1154632	5,769543	0,004104	3,075853
-	pretok	22501613	2	11250806	171,3482	1,43E-41	3,048833	gap	3585423	1	3585423	17,91589	4,69E-05	3,92433
	interakcija	10219312	4	2554828	38,90968	3,88E-23	2,424502	interakcija	495977,5	2	247988,7	1,239167	0,293496	3,075853
1250	Within	11227941	171	65660,48				Within	22814287	114	200125,3			
1230					modifikaci	ja F crit	1,073024					modifikad	ija F crit	ni
	Total	52869755	179					Total	29204951	119				
μm														

Preglednica c: Izpisi dvo-faktorskih analiz variance za ugotavljanje statistično signifikantnega vpliva velikosti pelet in pretoka zraka za fludizacijo na lokalne hitrosti pelet, ter interakcij med omenjenima spremenljivkama pri različnih razmikih, za položaj 10mm od notranjega roba razmejitvenega valja

10								SW						
10	ANOVA							ANOVA						
	Source of Variation	SS	df	MS	F	P-value	F crit	Source of Variation	SS	df	MS	F	P-value	F crit
	velikost	21117959	2	10558979	94,91721	1,87E-28	3,048833	velikost	2591995	2	1295998	4,323907	0,014726	3,048833
mm	pretok	47111685	2	23555843	211,7491	5,39E-47	3,048833	pretok	5675868	2	2837934	9,468354	0,000126	3,048833
	interakcija	1581296	4	395324	3,553663	0,008195	2,424502	interakcija	877676,9	4	219419,2	0,73206	0,571241	2,424502
	Within	19022741	171	111244,1				Within	51253550	171	299728,4			
					modifikad	ija F crit	1,068028					modifikac	ija F crit	ni
	Total	88833681	179					Total	60399090	179				
20	Source of Variation	SS	df	MS	F	P-value	F crit	Source of Variation	SS	df	MS	F	P-value	F crit
20	ANOVA Source of Variation	SS	df	MS	F	P-value	F crit	Source of Variation	SS	df	MS	F	P-value	F crit
	velikost	2281677	2	1140839	9,396748	0,000167	3,075853	velikost	8926305	2	4463153	21,718	3,94E-09	3,048833
mm	pretok	8797868	1	8797868	72,46542	7,79E-14	3,92433	pretok	1290711	2	645355,6	3,140344	0,045774	3,048833
	interakcija	599448,6	2	299724,3	2,46874	0,089209	3,075853	interakcija	449501,8	4	112375,5	0,546827	0,701576	2,424502
	Within	13840490	114	121407,8				Within	35141315	171	205504,8			
					modifikac	ija F crit	1,108697					modifikac	ija F crit	ni
	Total	25519483	119					Total	45807833	179				
25	ANOVA													
23	Source of Variation	SS	df	MS	F	P-value	F crit							
	pretok	2850649	2	1425324	10,8631	4,81E-05	3,075853							
mm	velikost	71298,68	1	71298,68	0,543403	0,462541	3,92433							
	interakcija	10177,89	2	5088,945	0,038785	0,96197	3,075853							
	Within	14957696	114	131207,9										
					1.00	in E crit	e i							
					modifikaci	jarun	ni	•						

Preglednica 64: Izpisi dvo-faktorskih analiz variance za ugotavljanje statistično signifikantnega vpliva razmika in pretoka zraka za fludizacijo na lokalne hitrosti pelet, ter interakcij med omenjenima spremenljivkama pri različnih velikostih, za položaj 10mm od notranjega roba razmejitvenega valja

•														
	CW							SW						
<00	ANOVA							ANOVA						
500 -	Source of Variation	SS	df	MS	F	P-value	F crit	Source of Variation	SS	df	MS	F	P-value	F crit
	pretok	15460266	2	7730133	57,29311	5,99E-18	3,075853	pretok	2529289	2	1264645	5,876564	0,003724	3,0758
710	gap	49817307	1	49817307	369,2289	1,5E-37	3,92433	gap	3484737	1	3484737	16,19291	0,000103	3,924
10	interakcija	2578671	2	1289335	9,556114	0,000146	3,075853	interakcija	305795,8	2	152897,9	0,710488	0,493567	3,0758
	Within	15381173	114	134922,6				Within	24532957	114	215201,4			
ım					modifikac	ija F crit	1,105283					modifikac	ija F crit	1,1044
	Total	83237417	119					Total	30852779	119				
- 00	Source of Variation	SS	df	MS	F	P-value	F crit	Source of Variation	SS	df	MS	F	P-value	F crit
- 00	ANOVA							ANOVA						
	Source of Variation	55	df	MS	F	P-value	F crit	Source of Variation	55	af	MS	F	P-value	F crit
000	gap	19079833		9539916	72,81534	4,22E-21	3,075853	pretok	3779113	2	1889557	7,440107	0,000918	3,0756
000	pretok	8058385	1	8058385	61,50725	2,58E-12	3,92433	gap	250/89,3	1	250/89,3	1,011105	0,310/08	3,924
	In Gravella	1004574	2	502287,2	3,833809	0,024408	3,075853	interakcija	324971,8	2	102485,9	0,039780	0,529288	3,0758
	Milete Le	14005700	444	101015.0						444	252060			
m	Within	14935733	114	131015,2	an e difilie e	ile Cerit	1 100150	Within	28952467	114	253969	modifikac	lia E crit	ni
m	Within Total	14935733 43078526	114	131015,2	modifikac	ija F crit	1,108159	Within Total	33313342	114	253969	modifikad	ija F crit	ni
m	Total	14935733 43078526	114	131015,2	modifikac	ija F crit	1,108159	Within Total	33313342	114	253969	modifikac	ija F crit	ni
m 120	Within Total ANOVA Course of Verificiation	14935733	114	131015,2	modifikac	ija F crit	1,108159	Vithin Total	33313342	114	253969	modifikac	ija F crit	ni
m 120	Within Total ANOVA Source of Variation and	14935733 43078526 \$\$ 5324060	114 119 df	131015,2 MS 2662030	F 29 92204	ija F crit P-value 7 25-12	1,108159	ANOVA Source of Variation	28952467 33313342 \$\$	114 119 df	253969 MS	F	ija F crit	ni F crit
m 120	Within Total ANOVA Source of Variation gap oretok	14935733 43078526 \$\$ 5324060 21249178	114 119 df 2	131015,2 MS 2662030 10624589	F 29,92304	ija F crit <i>P-value</i> 7,2E-12 3.485-33	1,108159 F crit 3,048833	ANOVA Source of Variation pretok	28952467 33313342 \$\$ 1024188	114 119 df 2	253969 MS 512094,1	F 1,77392	ija F crit <i>P-value</i> 0,174318	ni <i>F crit</i> 3,0758
m 120	ANOVA Source of Variation gap pretok	14935733 43078526 \$\$ 5324060 21249178 8072631	114 119 df 2 2 2	131015,2 MS 2662030 10624589 2018158	F 29,92304 119,4276 22,68547	ija F crit <i>P-value</i> 7,2E-12 3,48E-33 4,78E-15	1,108159 <i>F crit</i> 3,048833 3,048833 2,424502	ANOVA Source of Variation pretok gap	28952467 33313342 33313342 55 1024188 953265,3	114 119 df 2 1	253969 MS 512094,1 953265,3	F 1,77392 3,30216	ija F crit <u>P-value</u> 0,174318 0,071816	ni <i>F crit</i> 3,0758 3,924
m 120	ANOVA Source of Variation gap pretok interakcija	14935733 43078526 \$\$ 5324060 21249178 8072631 15212588	114 119 df 2 2 4 4	131015,2 MS 2662030 10624589 2018158 88962 56	F 29,92304 119,4276 22,68547	ija F crit P-value 7,2E-12 3,48E-33 4,78E-15	1,108159 <i>F crit</i> 3,048833 3,048833 2,424502	ANOVA Source of Variation pretok gap interakcija	28952467 33313342 55 1024188 953265,3 330400	114 119 df 2 1 2	253969 MS 512094,1 953265,3 165200	F 1,77392 3,30216 0,572261	ija F crit <u>P-value</u> 0,174318 0,071816 0,56586	ni <i>F crit</i> 3,0758 3,924 3,0758
m 120 250	ANOVA Source of Variation gap pretok interakcija Within	14935733 43078526 \$\$ 5324060 21249178 8072631 15212598	114 119 df 2 2 2 4 171	131015,2 MS 2662030 10624589 2018158 88962,56	F 29,92304 119,4276 22,68547 modifiker	ija F crit <i>P-value</i> 7,2E-12 3,48E-33 4,78E-15 iia F crit	1,108159 <i>F crit</i> 3,048833 3,048833 2,424502 1,065705	ANOVA Source of Variation pretok gap interakcija Within	28952467 33313342 33313342 55 1024188 953265,3 330400 32909440	114 119 df 2 1 2 114	253969 MS 512094,1 953265,3 165200 288679,3	F 1,77392 3,30216 0,572261	ija F crit <i>P-value</i> 0,174318 0,071816 0,56586	ni <i>F crit</i> 3,0758 3,924 3,0758
m 120 250	ANOVA Source of Variation gap pretok interakcija Within Total	14935733 43078526 55 5324060 21249178 8072631 15212598 49858467	114 119 119 df 2 2 2 4 171	131015,2 MS 2662030 10624589 2018158 88962,56	F 29,92304 119,4276 22,68547 modifikac	ija F crit <u>P-value</u> 7,2E-12 3,48E-33 4,78E-15 ija F crit	1,108159 <i>F crit</i> 3,048833 3,048833 2,424502 1,065706	ANOVA Source of Variation pretok gap interakcija Within	28952467 33313342 55 1024188 953265,3 330400 32909440	114 119 df 2 1 2 114	253969 MS 512094,1 953265,3 165200 288679,3	F 1,77392 3,30216 0,572261 modifikac	ija F crit <i>P-value</i> 0,174318 0,071816 0,56586 ija F crit	ni <i>F crit</i> 3,0758 3,924 3,0758 ni

Preglednica e: Izpisi dvo-faktorskih analiz variance za ugotavljanje statistično signifikantnega vpliva velikosti pelet in razmika na lokalne hitrosti pelet, ter interakcij med omenjenima spremenljivkama pri različnih pretokih, za položaj notranji rob razmejitvenega valja

	CW							SW						
105	ANOVA							ANOVA						
105	Source of Variation	SS	df	MS	F	P-value	F crit	Source of Variation	SS	df	MS	F	P-value	F crit
3	velikost	6036970	2	3018485	59,52828	2,39E-20	3,048833	velikost	469698,4	2	234849,2	1,810523	0,16824	3,075853
m [°] /h	gap	627880,2	2	313940,1	6,191289	0,002535	3,048833	gap	581798,9	1	581798,9	4,485262	0,036361	3,92433
	interakcija	3366040	4	841510,1	16,59563	1,65E-11	2,424502	interakcija	727722,5	2	363861,3	2,805116	0,064682	3,075853
	Within	8670852	171	50706,74				Within	14787335	114	129713,5			
					modifikad	ija F crit	1,065411					modifikac	ija F crit	1,107523
	Total	18701742	179					Total	16566555	119				
130	ANOVA							ANOVA						
150	Source of Variation	SS	df	MS	F	P-value	F crit	Source of Variation	SS	df	MS	F	P-value	F crit
3	velikost	1090544	2	545271,8	9,069969	0,00018	3,048833	velikost	2935257	2	1467629	9,368672	0,000171	3,075853
m [°] /h	gap	28678953	2	14339477	238,5207	3,38E-50	3,048833	gap	399490,2	1	399490,2	2,550163	0,113051	3,92433
	interakcija	2266092	4	566522,9	9,423457	6,59E-07	2,424502	interakcija	183586	2	91793,01	0,585965	0,558236	3,075853
	Within	10280241	171	60118,37				Within	17858418	114	156652,8			
					modifikacija F crit		1,066643					modifikac	ija F crit	1,098887
	Total	42315830	179					Total	21376751	119				
								,						
156	ANOVA							ANOVA						
150	Source of Variation	SS	df	MS	F	P-value	F crit	Source of Variation	SS	df	MS	F	P-value	F crit
3 /1	velikost	112499,2	2	56249,58	0,605025	0,547226	3,048833	velikost	1737522	2	868761,1	4,208787	0,017238	3,075853
m [°] /h	gap	53689888	2	26844944	288,7462	1,51E-55	3,048833	gap	563940,1	1	563940,1	2,732056	0,101104	3,92433
	interakcija	1505856	4	376464	4,049275	0,003662	2,424502	interakcija	2719835	2	1359918	6,588237	0,001961	3,075853
	Within	15897993	171	92970.72				Within	23531427	114	206416			
					modifikac	iia E crit	1.068952					modifikac	ija F crit	ni
	Tatal	71006007	170				-,	Total	28552725	119				

Preglednica f: Izpisi dvo-faktorskih analiz variance za ugotavljanje statistično signifikantnega vpliva velikosti pelet in razmika na lokalne hitrosti pelet, ter interakcij med omenjenima spremenljivkama pri različnih pretokih, za položaj 10mm od notranjega roba razmejitvenega valja

+	ΔΝΟΥΔ													
	Source of Variation	.55		df I	15	P-va	ue Ecrit	Source of Variation	22	df	MS	F	P-value.	E crit
	gap	101160	19.951	2 5	05805 7.31	2606 0.00	149 3.15884	3 volikost	2000/77	<i>uj</i>	1/00720	F 020127	0.000542	2 075952
	Within Groups	39426	527,62	57 691	68,91			gan	233330.4		233330.4	1 250733	0.265764	3,073833
					mod	ifikacija F cr	it 3,22568	4 interakcija	233330,4	2	172638.3	0.925402	0,203704	2 075852
	Total	495423	37,572	59				Within	21267257	114	186554.9	0,525402	0,355325	3,073833
	ANOVA								21207207		20000 ()0	modifikac	iia E crit	ni
	Source of Variation	SS		if N	1S F	P-va	ue F crit	Total	24845340	119				
	velikost	112777	798,19	2 56	38899 67,3	6302 9,68	-16 3,15884	3						
	Within Groups	477141	9,925	57 837	09,12			_						
					mod	fikacija F cr	it ni	_						
	Total	160492	218,11	59										
╉														
Ī	ANOVA				_			ANOVA		46		-	Quality	E e elt
	ANOVA Source of Variation	SS	df	MS	F	P-value	F crit	ANOVA Source of Variation	SS	df	MS	F	P-value	F crit
	ANOVA Source of Variation velikost	<i>SS</i> 2152446	df 2	MS 107622	F 10,08910	<i>P-value</i> 5 9,24E-05	F crit 3,075853	ANOVA Source of Variation velikost	SS 6588976	df1	MS 3294488	F 12,73478	P-value 1,02E-05	F crit 3,075853
	ANOVA Source of Variation velikost gap	<i>SS</i> 2152446 24061500	<i>df</i> 2	<i>MS</i> 107622 24061500	F 3 10,08910 225,5668	<i>P-value</i> 5 9,24E-05 8 8,72E-25	F crit 3,075853 3,92433	ANOVA Source of Variation velikost gap	SS 6588976 1100747	df 2 1	MS 3294488 1100747	F 12,73478 4,254916	P-value 1,02E-05 0,041409	F crit 3,075853 3,92433
	ANOVA Source of Variation velikost gap interakcija	<i>SS</i> 2152446 24061500 2835079	<i>df</i> 2 1 2	<i>MS</i> 1076223 24061500 1417533	F 10,08910 225,5668 13,28880	P-value 5 9,24E-05 8 8,72E-25 5 6,49E-06	<i>F crit</i> 3,075853 3,92433 3,075853	ANOVA Source of Variation velikost gap interakcija	SS 6588976 1100747 337302,7	df 2 1 2	MS 3294488 1100747 168651,3 258700	F 12,73478 4,254916 0,651919	<i>P-value</i> 1,02E-05 0,041409 0,522976	<i>F crit</i> 3,075853 3,92433 3,075853
	ANOVA Source of Variation velikost gap interakcija Within	<i>SS</i> 2152446 24061500 2835079 12160524	<i>df</i> 2 1 2 114	<i>MS</i> 107622 24061500 141753 106671,3	F 3 10,0891(0 225,5668 9 13,2888(3	P-value 5 9,24E-05 3 8,72E-25 5 6,49E-06	<i>F crit</i> 3,075853 3,92433 3,075853	ANOVA Source of Variation velikost gap interakcija Within	\$\$ 6588976 1100747 337302,7 29491797	<i>df</i> 2 1 2 114	MS 3294488 1100747 168651,3 258700	F 12,73478 4,254916 0,651919	P-value 1,02E-05 0,041409 0,522976	<i>F crit</i> 3,075853 3,92433 3,075853
	ANOVA Source of Variation velikost gap interakcija Within	<i>SS</i> 2152446 24061500 2835079 12160524	<i>df</i> 2 1 2 114	<i>MS</i> 1076223 24061500 1417533 106671,3	<i>F</i> 3 10,08910 9 225,5660 9 13,28880 9 modifika	P-value 5 9,24E-05 3 8,72E-25 5 6,49E-06 cija F crit	<i>F crit</i> 3,075853 3,92433 3,075853 1,109243	ANOVA Source of Variation velikost gap interakcija Within	<i>SS</i> 6588976 1100747 337302,7 29491797	df 2 1 2 114	MS 3294488 1100747 168651,3 258700	F 12,73478 4,254916 0,651919 modifikac	<i>P-value</i> 1,02E-05 0,041409 0,522976 ija F crit	<i>F crit</i> 3,075853 3,92433 3,075853 ni
	ANOVA Source of Variation velikost gap interakcija Within Total	<i>SS</i> 2152446 24061500 2835079 12160524 41209549	<i>df</i> 2 1 2 114 119	<i>MS</i> 1076223 24061500 1417533 106671,3	F 10,0891(225,566(13,2888(modifika	P-value 5 9,24E-05 8,72E-25 5 6,49E-00 cija F crit	<i>F crit</i> 3,075853 3,92433 3,075853 1,109243	ANOVA Source of Variation velikost gap interakcija Within Total	\$\$ 6588976 1100747 337302,7 29491797 37518823	<i>df</i> 2 1 2 114 119	MS 3294488 1100747 168651,3 258700	F 12,73478 4,254916 0,651919 modifikac	<i>P-value</i> 1,02E-05 0,041409 0,522976 ija F crit	<i>F crit</i> 3,075853 3,92433 3,075853 ni
	ANOVA Source of Variation velikost gap interakcija Within Total	<i>SS</i> 2152446 24061500 2835079 12160524 41209549	<i>df</i> 2 1 2 114 119	MS 107622 24061500 141753 106671,3	F 10,0891(225,566(13,2888(modifika	P-value 5 9,24E-05 8 8,72E-25 5 6,49E-06 cija F crit	<i>F crit</i> 3,075853 3,92433 3,075853 1,109243	ANOVA Source of Variation velikost gap interakcija Within Total	<i>SS</i> 6588976 1100747 337302,7 29491797 37518823	<i>df</i> 2 1 2 114 119	MS 3294488 1100747 168651,3 258700	<i>F</i> 12,73478 4,254916 0,651919 modifikac	<i>P-value</i> 1,02E-05 0,041409 0,522976 ija F crit	<i>F crit</i> 3,075853 3,92433 3,075853 ni
	ANOVA Source of Variation velikost gap interakcija Within Total	<i>SS</i> 2152446 24061500 2835079 12160524 41209549	<i>df</i> 2 1 2 114 119	MS 1076223 24061500 1417539 106671,3	F 10,0891(225,566(13,2888(modifika	P-value 5 9,24E-05 8 8,72E-25 5 6,49E-06 cija F crit	<i>F crit</i> 3,075853 3,92433 3,075853 1,109243	ANOVA Source of Variation velikost gap interakcija Within Total	<i>SS</i> 6588976 1100747 337302,7 29491797 37518823	df 2 1 2 114 119	MS 3294488 1100747 168651,3 258700	F 12,73478 4,254916 0,651919 modifikac	<i>P-value</i> 1,02E-05 0,041409 0,522976 ija F crit	<i>F crit</i> 3,075853 3,92433 3,075853 ni
	ANOVA Source of Variation velikost gap interakcija Within Total	<i>SS</i> 2152446 24061500 2835079 12160524 41209549	<i>df</i> 2 1 2 114 114	MS 107622 24061500 141753 106671,:	F 10,0891(225,566(13,2888(modifika	P-value 5 9,24E-05 8,72E-25 5 6,49E-06 cija F crit	<i>F crit</i> 3,075853 3,92433 3,075853 1,109243	ANOVA Source of Variation velikost gap interakcija Within Total	SS 6588976 1100747 337302,7 29491797 37518823	<i>df</i> 2 1 2 114 119	MS 3294488 1100747 168651,3 258700	F 12,73478 4,254916 0,651919 modifikac	<i>P-value</i> 1,02E-05 0,041409 0,522976 ija F crit	<i>F crit</i> 3,075853 3,92433 3,075853 ni
	ANOVA Source of Variation velikost gap interakcija Within Total ANOVA	<u>SS</u> 2152446 24061500 2835079 12160524 41209549	df 2 1 2 114 114	MS 107622 24061500 141753 106671,3	F 10,0891(225,566(13,2888(modifika	P-value 5 9,24E-05 8 8,72E-25 5 6,49E-06 cija F crit	<i>F crit</i> 3,075853 3,92433 3,075853 1,109243	ANOVA Source of Variation velikost gap interakcija Within Total ANOVA	SS 6588976 1100747 337302,7 29491797 37518823	df 2 1 2 114 119	<u>MS</u> 3294488 1100747 168651,3 258700	F 12,73478 4,254916 0,651919 modifikac	<i>P-value</i> 1,02E-05 0,041409 0,522976 ija F crit	<i>F crit</i> 3,075853 3,92433 3,075853 ni
	ANOVA Source of Variation velikost gap interakcija Within Total ANOVA Source of Variation	<u>SS</u> 2152446 24061500 2835079 12160524 41209549 <u>SS</u>	df 2 1 2 114 119 119	MS 107622: 2406150(141753: 106671,: MS	F 10,0891(225,566) 13,2888(modifika	P-value 9,24E-05 8,72E-25 6,49E-06 cija F crit P-value	<i>F crit</i> 3,075853 3,92433 3,075853 1,109243 <i>F crit</i>	ANOVA Source of Variation velikost gap interakcija Within Total ANOVA Source of Variation	\$\$ 6588976 1100747 337302,7 29491797 37518823	df 2 1 2 114 119 df	MS 3294488 1100747 168651,3 258700	F 12,73478 4,254916 0,651919 modifikac	P-value 1,02E-05 0,041409 0,522976 ija F crit P-value	<i>F crit</i> 3,075853 3,92433 3,075853 ni
	ANOVA Source of Variation velikost gap interakcija Within Total ANOVA Source of Variation velikost	SS 2152446 24061500 2835079 12160524 41209549 41209549 5S 2194378	df 2 1 2 114 119 119 df 2	MS 107622: 2406150(141753) 106671,3 106671,3 10671,3 MS 1097185	F 10,0891(225,566) 13,2888(modifika F 7,851185	P-value 9,24E-03 8,72E-25 6,49E-06 cija F crit P-value 0,000635 0,000635	<i>F crit</i> 3,075853 3,92433 3,075853 1,109243 <i>F crit</i> 3,075853	ANOVA Source of Variation velikost gap interakcija Within Total ANOVA Source of Variation velikost	SS 6588976 1100747 337302,7 29491797 37518823 7518823	df 2 1 2 114 119 119 df 2	MS 3294488 1100747 168651,3 258700 	F 12,73478 4,254916 0,651919 modifikac	P-value 1,02E-05 0,041409 0,522976 ija F crit P-value 0,031017	F crit 3,075853 3,92433 3,075853 ni <u>F crit</u> 3,075853
	ANOVA Source of Variation velikost gap interakcija Within Total ANOVA Source of Variation velikost gap	SS 2152446 24061500 2835079 12160524 41209549 41209549 SS 2194378 26316286	df 2 1 2 114 119 119 df 2 2 1	MS 107622: 24061500 1417533 106671,3 106671,3 1097183 26316288	F 10,0891(225,566(13,2888(modifika F 7,851185 188,3122	P-value 5 9,24E-05 8 72E-25 6,49E-06 cija F crit P-value 0,000635 6,77E-26	F crit 3,075853 3,92433 3,075853 1,109243 F crit 3,075853 3,92433	ANOVA Source of Variation velikost gap interakcija Within Total ANOVA Source of Variation velikost gap	\$\$ 6688976 1100747 337302,7 29491797 37518823 37518823 \$\$ 2238938 3303795	df 2 1 2 114 119 119 df 2 1	MS 3294488 1100747 168651,3 258700 	F 12,73478 4,254916 0,651919 modifikac F 3,581214 10,56894	P-value 1,02E-05 0,041409 0,522976 ija F crit P-value 0,031017 0,001512	F crit 3,075853 3,92433 3,075853 ni F crit 3,075853 3,92433
	ANOVA Source of Variation velikost gap interakcija Within Total ANOVA Source of Variation velikost gap interakcija	SS 2152446 24061500 2835079 12160524 41209549 41209549 2194378 26316286 7120680	df 2 1 2 114 119 119 df 2 1 2 2 1 2	MS 107622: 24061500 1417532 106671,: 106671,: 109718: 2631628(356034(F 10,0891(225,566) 13,2888(modifika F 7,851189 188,3123 25,4768	P-value 9,24E-05 8,72E-25 6,49E-06 cija F crit P-value 0,000635 6,77E-26 7,14E-10	F crit 3,075853 3,92433 3,075853 1,109243 F crit 3,075853 3,92433 3,075853	ANOVA Source of Variation velikost gap interakcija Within Total ANOVA Source of Variation velikost gap interakcija	55 6588976 1100747 337302,7 29491797 37518823 37518823 55 2238938 3303795 335508,3	df 2 1 2 114 119 df 2 11 2 11 2 11 2 1 2 1 2 1 2 1 2 1 2 1 2	MS 3294488 1100747 168651,3 258700 59700 597000 50700 500000000	F 12,73478 4,254916 0,651919 modifikac F 3,581214 10,56894 0,53665	P-value 1,02E-05 0,041409 0,522976 ija F crit P-value 0,031017 0,001512 0,586173	F crit 3,075853 3,92433 3,075853 ni F crit 3,075853 3,92433 3,92433
	ANOVA Source of Variation velikost gap interakcija Within Total ANOVA Source of Variation velikost gap interakcija Within	SS 2152446 24061500 2835079 12160524 41209549 41209549 5S 2194378 26316286 7120680 15931286	df 2 1 2 114 114 119 df 2 1 1 2 114	MS 107622: 2406150(141753: 106671,: 106671,: 106671,: 1067718: 2631628(356034(356034(139748.)	F 10,08911 225,5666 13,28886 modifika F 7,851185 188,3125 25,47685	P-value 5 9,24E-03 8 8,72E-25 5 6,49E-06 Cija F crit P-value 0,000635 6 6,77E-26 7,14E-10	F crit 3,075853 3,92433 3,075853 1,109243 F crit 3,075853 3,92433 3,075853	ANOVA Source of Variation velikost gap interakcija Within Total ANOVA Source of Variation velikost gap interakcija Within	55 6588976 1100747 337302,7 29491797 37518823 37518823 55 2238938 330375 335508,3 335508,3	<i>df</i> 2 1 1 2 114 119 119 <i>df</i> 2 1 1 1 2 11 1 1 1 1 1 1 1 1 1 1 1 1 1	MS 3294488 1100747 168651,3 258700 587000 58700 58700 58700 58700 58700 587000 58700 58700 58700 587000 58700 58700 587000 58700 58700 58700 587000 58700 58700 58700 58700 58700 587000 58700 587000 587000 587000 5870000000000	F 12,73478 4,254916 0,651919 modifikac F 3,581214 10,56894 0,53665	P-value 1,02E-05 0,041409 0,522976 ija F crit P-value 0,031017 0,001512 0,586173	F crit 3,075853 3,92433 3,075853 ni F crit 3,075853 3,92433 3,075853
	ANOVA Source of Variation velikost gap interakcija Within Total ANOVA Source of Variation velikost gap interakcija Within	SS 2152446 24061500 2835079 12160524 41209549 41209549 2194378 26316286 7120680 15931286	df 2 1 2 114 119 df 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 1 2 1 1 2 1 1 2 1 2 1 1 1 2 1 2 1 2 1 2 1 1 2 1 2 1 2 1 2 2 1 </td <td>MS 107622: 24061500 141753 106671,3 106671,3 1097188 26316280 3560340 139748,3</td> <td>F 10,0891(225,566) 13,2888(modifika F 7,851185 188,3123 25,47683 modifika</td> <td>P-value 9,24E-03 8,72E-25 6,49E-00 cija F crit P-value 0,000635 6,77E-26 7,14E-10 cija F crit</td> <td>F crit 3,075853 3,92433 3,075853 1,109243 5,075853 3,92433 3,075853 3,92433 3,075853</td> <td>ANOVA Source of Variation velikost gap interakcija Within Total ANOVA Source of Variation velikost gap interakcija Within</td> <td>SS 6588976 1100747 337302,7 29491797 37518823 SS 2238938 3303795 335508,3 35635811</td> <td>df 2 1 2 114 119 df 2 11 2 11 2 11</td> <td><u>MS</u> 3294488 1100747 168651,3 258700 <u>MS</u> 1119469 3303795 167754,2 312594,8</td> <td>F 12,73478 4,254916 0,651919 modifikac F 3,581214 10,56894 0,53665 modifikac</td> <td>P-value 1,02E-05 0,041409 0,522976 ija F crit P-value 0,031017 0,001512 0,586173 ija F crit</td> <td>F crit 3,075853 3,92433 3,075853 ni F crit 3,075853 3,92433 3,075853 3,92433</td>	MS 107622: 24061500 141753 106671,3 106671,3 1097188 26316280 3560340 139748,3	F 10,0891(225,566) 13,2888(modifika F 7,851185 188,3123 25,47683 modifika	P-value 9,24E-03 8,72E-25 6,49E-00 cija F crit P-value 0,000635 6,77E-26 7,14E-10 cija F crit	F crit 3,075853 3,92433 3,075853 1,109243 5,075853 3,92433 3,075853 3,92433 3,075853	ANOVA Source of Variation velikost gap interakcija Within Total ANOVA Source of Variation velikost gap interakcija Within	SS 6588976 1100747 337302,7 29491797 37518823 SS 2238938 3303795 335508,3 35635811	df 2 1 2 114 119 df 2 11 2 11 2 11	<u>MS</u> 3294488 1100747 168651,3 258700 <u>MS</u> 1119469 3303795 167754,2 312594,8	F 12,73478 4,254916 0,651919 modifikac F 3,581214 10,56894 0,53665 modifikac	P-value 1,02E-05 0,041409 0,522976 ija F crit P-value 0,031017 0,001512 0,586173 ija F crit	F crit 3,075853 3,92433 3,075853 ni F crit 3,075853 3,92433 3,075853 3,92433

PREGLEDNICE - KOTI

Preglednica 65: Primerjava kotov leta pelet med klasično Wursterjevo komoro in swirl komoro pri enakih razmikih, za položaj notranji rob razmejitvenega valja

Preglednica 66: Primerjava kotov leta pelet med klasično Wursterjevo komoro in swirl komoro pri enakih razmikih, za položaj 10 mm od notranjega roba razmejitvenega valja

Preglednica 67: Primerjava kotov leta pelet med klasično Wursterjevo komoro in swirl komoro pri enakih pretokih, za položaj notranji rob razmejitvenega valja

Preglednica 68: Primerjava kotov leta pelet med klasično Wursterjevo komoro in swirl komoro pri enakih pretokih, za položaj 10 mm od notranjega roba razmejitvenega valja

Preglednica 69: Primerjava kotov leta pelet med klasično Wursterjevo komoro in swirl komoro pri enakih velikostih, za položaj notranji rob razmejitvenega valja

Preglednica 70: Primerjava kotov leta pelet med klasično Wursterjevo komoro in swirl komoro pri enakih velikostih, za položaj 10 mm od notranjega roba razmejitvenega valja