SANDRA ČERU

VREDNOTENJE IZRAŽANJA GENA atf3 PO MODULACIJI PROTEASOMSKE AKTIVNOSTI

EVALUATION OF atf3 GENE EXPRESSION AFTER PROTEASOME ACTIVITY MODULATION

Ljubljana, 2013
Diplomsko delo sem opravljala na Fakulteti za farmacijo, na Katedri za klinično biokemijo, pod mentorstvom prof. dr. Irene Mlinarič-Raščan, mag. farm. in somentorstvom asist. dr. Martine Gobec, mag. farm.

ZAHVALA

Iskreno se zahvaljujem mentorici prof. dr. Ireni Mlinarič-Raščan, mag. farm za strokovno pomoč in nasvete pri izdelavi diplomske naloge ter za razumevanje, ko se prvotne ideje niso najbolje izšle. Zahvaljujem se somentorici, asist. dr. Martini Gobec, mag. farm., za vso pomoč pri delu, za potrpežljivost ob mojih neskončnih vprašanjih ter občasnih nerodnostih, za entuziazem v trenutkih, ko mi ga je primanjkovalo ter za vedno zabavne ure v laboratoriju. Nedolžni sarkazem & Tiffany sta zmagovalna kombinacija.☺ Velika zahvala gre mojim staršem, ki so mi študij omogočili ter me vedno spodbujali. Hvala tudi vama babi in dedi, za vse tiste dodatne evrčke in ker verjameta vame. David hvala, ker te vedno skrbi zame. Last but not least, en velik hvala vsem tistim, ki ste mi blizu (saj veste, kdo ste ;)) - ker je z vami vsak dan sončkast, ter moji dragi opoziciji - v teh letih se je nabralo toliko nepozabnih spominov, da bi zanje potrebovali mnogo več kot en album.☺

IZJAVA

Izjavljam, da sem diplomsko delo izdelala samostojno pod mentorstvom prof. dr. Irene Mlinarič-Raščan, mag. farm. in somentorstvom asist. dr. Martine Gobec, mag. farm.

Sandra Čeru

Ljubljana, april 2013

Predsednik diplomske komisije: prof. dr. Stane Srčič, mag. farm.
Članica diplomske komisije: doc. dr. Mojca Lunder, mag. farm.
I KAZALO VSEBINE

KAZALO SLIK ... III
KAZALO PREGLEDNIC ... IV
KAZALO ENAČB ... IV
POVZETEK .. V
ABSTRACT ... VII
SEZNAM KRATIC IN OKRAJŠAV .. VIII

1 UVOD ... 1

1.1 LEVKEMIJE IN LIMFOMI .. 1

1.1.1 Levkemije .. 1

1.1.2 Limfomi .. 2

1.2 APOPTOZA .. 4

1.2.1 Mehanizem apoptoze .. 5

1.2.2 Apoptoza in rak ... 6

1.3 PROTEASOM IN ZAVIRALCI PROTEASOMA 7

1.4 STATMIN (STMN3) ... 9

1.5 RGC-32 .. 10

1.6 ATF3 .. 12

1.6.1 ATF3 in rakava obolenja .. 12

2 NAMEN DELA .. 15

3 MATERIALI IN METODE .. 16

3.1 MATERIALI ... 16

3.1.1 Kemikalije ... 16

3.1.2 Reagenti ... 17

3.1.3 Kompleti ... 17

3.1.4 Gojišča ... 17

3.1.5 Laboratorijska oprema ... 18

3.1.6 Humane celične linije .. 19

3.2 METODE DELA S CELICAMI 20
KAZALO SLIK

Slika 1: Ekstrinzična in intrinzična pot apoptoze ... 5
Slika 2: Shematski prikaz strukture proteasoma .. 7
Slika 3: Struktura bortezomiba .. 8
Slika 4: Vloga statmina v mitotski fazi celičnega cikla .. 9
Slika 5: Shematski prikaz celičnega metabolizma reagenta MTS. ... 22
Slika 6: Izražanje gena stmn3 v celicah Ramos po tretiranju s spojino 15 in bortezomibom 31
Slika 7: Izražanje gena stmn3 v celicah U937 po tretiranju s spojino 15 in bortezomibom 32
Slika 8: Izražanje gena rgc-32 v celicah Ramos po tretiranju s spojino 15 in bortezomibom 33
Slika 9: Izražanje gena rgc-32 v celicah U937 po tretiranju s spojino 15 in bortezomibom 33
Slika 10: Izražanje gena atf3 v celicah Ramos po tretiranju s spojino 15 in bortezomibom 34
Slika 11: Izražanje gena atf3 v celicah U937 po tretiranju s spojino 15 in bortezomibom 35
Slika 12: Izražanje gena atf3 v celicah Ramos ob prisotnosti zaviralcev signalnih poti 36
Slika 13: Izražanje gena atf3 v celicah U937 ob prisotnosti zaviralcev signalnih poti. 37
Slika 14: Metabolna aktivnost limfoblastoidnih celičnih linij pri tretiranju s spojino 15 in bortezomibom .. 40
KAZALO PREGLEDNIC

Preglednica I: Primer izračuna redčitve vzorca za reverzno transkripcijo 25
Preglednica II: Sestavine osnovne zmesi za reakcijo reverzne transkripcije 26
Preglednica III: Program reakcije reverzne transkripcije.. 26
Preglednica IV: Primer normalizacije na hišni gen .. 28

KAZALO ENAČB

Enačba 1: Računanje koncentracije celic s hemocitometrom.. 21
Enačba 2: Računanje odstotka metabolne aktivnosti celic... 23
Enačba 3: Izračun volumnov vzorca in vode, potrebnih za reakcijo reverzne transkripcije

... 25
POVZETEK

izhodišče za nadaljnje raziskave, ki bi podrobneje razjasnile mehanizem delovanja te spojine.
ABSTRACT
Cancer is one of the most common diseases in the Western world and despite of the developed science the mortality rate is still high. Because of that numerous studies are focusing on finding new substances and therapeutic approaches to increase survival rate, reduce side effects of existing substances and improve quality of patients' lives. Since tumor cells have developed the ability of infinite division, the main goal of antitumorigenic compounds is to selectively cause apoptosis in those cells. In previous studies inhibitors of serine proteases have been synthesized and evaluated as modulators of apoptosis. It has been found that N-amidinopiperidine-based compounds are selectively toxic to Burkitt's lymphoma cells with proteasome inhibition as a mechanism of action. Compound 15 was chosen for further studies due to its lowest constant of inhibition. Our aim was to elucidate the molecular mechanisms which are responsible for the selective cytotoxicity of compound 15 towards the Burkitt's lymphoma cells. After analysis of data obtained from microarrays, a gene expression profile of cells exposed to compound 15 was determined. It has been found that expression of the atf3 gene was the most up-regulated, while the most down-regulated was the stmn3 gene. Expression of the rge-32 gene is known to be characteristically increased in Burkitt’s lymphoma cells and was found to be significantly decreased in the presence of compound 15. Therefore these three genes were chosen for further evaluation with RT-PCR. We performed the experiments on Ramos cells (Burkitt's lymphoma cells) that were exposed to compound 15 for various time points. As positive control proteasome inhibitor bortezomib was used. At the same time we were investigating expression of all three chosen genes on U937 (monocytes from diffuse histiocytic lymphoma), cells for which was previously demonstrated that they are not susceptible to compound 15 mediated cytotoxicity. After comparison of both cell lines and comparison of exposure to compound 15 and bortezomib, we found that a major difference was observed in the expression of the atf3 gene. Thereby we postulate the potential involvement of ATF3 in mediating the selective cytotoxicity of compound 15. To better understand its role, we explored the signaling pathways involved in the regulation of this gene. By using inhibitors of the main signaling pathways we observed a decreased expression of atf3 gene in Ramos cells when using wortmannin, which indicated involvement of the Akt signaling pathway. To confirm the importance of atf3 gene in mediating the selective cytotoxicity of compound 15 further studies are needed. Nevertheless, the obtained results present a basis for the future.
SEZNAM KRATIC IN OKRAJŠAV

Akt serin/treonin kinaza
ATF3 aktivacijski transkripcijski faktor 3
BCR B-celični receptor
BL Burkittov limfom
CDK od ciklinov odvisna kinaza
CRE cAMP odzivni element
CREB CRE vezavni protein
DNA deoksiribonukleinska kislina
EBV virus Epstein-Barr (humani herpesvirus 4)
ERK kinaza uravnavana z zunajceličnim signalom (angl. extracellular signal regulated kinase)
Fas površinska molekula celic Tc, tarča za TNF
JNK c-JUN NH2 – terminalna kinaza
LCL limfoblastoidne celične linije
mRNA informacijska RNA
MTS [3-(4,5-dimetiltiazol-2-il)-5-(3-karboksimetoksifenil)-2-(4-sulfofenil)-2H-tetrazolijeva sol
p53 tumor zaviralni protein
rgc-32 odzivni gen na komplement 32 (ang. response gene to complement 32)
RNA ribonukleinska kislina
RNAza encim, ki katalizira hidrolizo RNA
RPMI medij za gojenje levkemičnih celičnih linij, kratica izvira iz Roswell Park Memorial Institute
RT-PCR verižna reakcija s polimerazo v realnem času
TGF-β dejavnik tumorske rasti β
tNF-R1 receptor za dejavnik tumorske nekroze
1 UVOD

1.1 LEVKEMIJE IN LIMFOMI

Maligna obolenja zajemajo veliko število različnih bolezni. So zelo razširjena v zahodnem svetu in po smrtnosti so umaščena takoj za kardiovaskularnimi boleznimi (1). Med maligna obolenja spadajo tudi levkemije in limfomi.

1.1.1 Levkemije

Levkemije so redke rakaste novotvorbe krvotvornega tkiva, katerih značilnost je kopčenje enega klona nenormalnih in posledično nefunkcionalnih krvnih celic v kostnem mozgu in v krvi. Ker celice ne podležejo apoptozi, se kopčijo v kostnem mozgu, zaradi česar se pojavlja slabokrvnost, njevtropenia in trombocitopenija (2). Pri večini je sprožilni znak nepoznan, zato govorimo o primarnih oblikah levkemij, če pa je vzrok znan, gre za sekundarno obliko levkemije. Dejavniki, ki lahko sprožijo nastanek levkemij, so obsevanje z ionizirajočimi žarki, zdravljenje predhodne bolezni z obsevanjem, genetsko ozadje, različne kemijske spojine, citostatiki in nekateri virusi (3). Glede na vrsto celic jih delimo v limfocitne in mieločne, glede na razvojno stopnjo levkemičnih celic in potek bolezni pa v akutne (hitro potekajoče) in kronične (dolgotrajne). Akutne levkemije so bolj pogoste, tip levkemije pa je pogosto odvisen od starosti (2).

Akutne levkemije so heterogena skupina klonskih bolezni, ki so posledica pridobljene somatske mutacije in nato nenadzorovane rasti multipotentne matične celice. V primeru, da gre za okvaro mieloične multipotentne celice, govorimo o akutni mieločni levkemiji, v primeru okvare limfocitne multipotentne celice pa se razvije akutna limfocitna levkemija (3).

Kronične levkemije so skupina kronično potekajočih krvnih bolezni, pri katerih je povečano nastajanje krvnih celic zaradi motnje na ravni krvotvorne matične celice. Tudi tukaj ločimo kronično mieločno levkemijo, kjer pri večini bolnikov najdemo kromosomsko spremembo Philadelphia (Ph) kromosoma (t.j. recipročna translokacija med kromosomoma 9 in 22) ter kronične levkemije limfocitne vrste, ki sodijo med limfome (2).
1.1.2 Limfomi

Maligni limfomi so novotvorbe, ki nastanejo zaradi trajne in samostojne razrasti celic limfatičnega tkiva, ki je ireverzibilna. So klonske bolezni, ki nastanejo z maligno preobrazbo limfocitov T, B ali celic ubijalk (NK). Najpogosteje prizadenejo bezgavke, vranico, nebnici in kostni mozeg. V nekaterih primerih so maligni limfomi dolgo časa omejeni, drugi pa se hitro razširijo v kostni mozeg in kri. V osnovi jih delimo v dve večji skupini: Hodgkinov limfom, za katerega so značilne Reed-Sternbergove celice velikanke in Hodgkinove celice, ter ne-Hodgkinovi limfomi (3).

Približno 95 % limfomov je B-limfocitnega izvora in postaja jasno, da njihov nastanek ni povsem avtonomen, saj so ključni dejavniki, od katerih je odvisna normalna diferenciacija celic B, potrebni tudi za maligno rast večine B-celičnih limfomov. Eden takšnih dejavnikov je BCR (B-celični receptor), katerega izražanje je ključno za preživetje mnogih limfomov. Za precej B-celičnih limfomov so značilne recipročne kromosomske translokacije, v patogenezo pa so pogosto vključene tudi genomske amplifikacije (npr. gena REL, ki ima pomembno vlogo v preživetju in proliferaciji celic B), mutacije v tumor zaviralnih genih (npr. p53) ter virusi (npr. Epstein-Barr virus, humani herpes virus 8).

Poleg tega predvidevajo, da so v razvoj limfomov vpleteni tudi eksogeni ali avto-antigeni ter stimulativni signali iz same okolice limfoma (4).

Burkittov limfom (BL) je visoko agresivni B-celični ne-Hodgkinov limfom in je najhitreje rastoci humani tumor, pri katerem se celice podvojijo v 24 do 48 urah (5). Njegova genetska značilnost so kromosomske spremembe na c-myc onkogenu, ki prispevajo k limfomogenezi preko sprememb v regulaciji celičnega cikla, celični diferenciaciji, apoptozi, celični adheziji ter metabolizmu (6).

WHO klasifikacija opisuje tri različne klinične vrste: endemično, sporadično in povezano s pomanjkljivim imunskim odzivom. Medtem ko je endemična oblika značilna za ekvatorialno Afriko (t.j. endemično območje malarije) in je skoraj v vseh primerih povezana z Epstein-Barr virusom (EBV), sporadična oblika nima specifične klimatske ali geografske razporeditve. Imunopomanjkljiva oblika se ponavadi pojavlja pri bolnikih s HIV infekcijo in je pogostejša, ko je število CD4+ T celic višje od 200/µL (zgodaj v napredovanju HIV infekcije) (5,6). Predvidevajo, da virus HIV vpliva na celice B preko deregulacije z aktivacijo sprožene citidin deaminaze ter preko kronične aktivacije celic B. Ena izmed vlog EBV v endemičnem Burkittovem limfomu bi lahko bila blokada apoptoze
v celicah B preko *c-myc* translokacije. EBV lahko sproži tudi genomsko nestabilnost, deregulira funkcije telomer in inducira poškodbo DNA v okuženih celicah. V EBV pozitivni endemični in imunopomanjkljivi vrsti so opazili virusne mikroRNA, ki jih zato prav tako povezujejo s tumorigenezo (5).

Teorije o izvoru celic limfoma so različne – nekatere raziskave kažejo, da le-te izvirajo iz celic germinalnega centra, medtem ko druge nakazujejo, da limfom izvira iz spominskih B-celic (4,5). Poleg že omenjenega EBV, bolezen povezujejo z malarijo vrste falciparum, ki naj bi povečala tveganje za endemični BL prek interakcije z EBV okuženimi celicami (5).

V 70 do 80 % primerov BL najdemo translokacijo t(8;14)(q24;q32), ostali dve translokaciji t(2;8)(p12;q24) in t(8;22)(q24;q11) pa se pojavita v 10 do 15 % primerov. Omenjene mutacije povzročijo translokacijo *c-myc* zraven težkih oz. κ- ali λ-lahkih verig imunoglobulinov. Zaradi povečane transkripcije genov za težke in lahke verige imunoglobulinov v zrelih limfocitih B, se nato poveča tudi transkripcija gena *c-myc*, ki ima ključno vlogo v nadzoru celičnega cikla (5,6).

Klinično se BL izraža v povečanih bezgavkah (limfodenopatiji), pogosto z nabreklim treuhom ali čeljustjo ter infiltracijo kostnega mozga. Do 30 % bolnikov zboži za meningitisom. Celice BL površinsko izražajo IgM, Bcl-6 ter celične označevalce CD19 CD20, CD22, CD10 ter CD79a in so negativne za CD5, CD23, TdT ter pogosto za Bcl-2 (5,6). Zdravljenje Burkittovega limfoma sestojih iz kratkih, intenzivnih ciklov kemoterapije z različnimi kombinacijami citostatikov (cilofosfamid, vinkristin, metotreksat, doksorubicin in citarabin). Prognoza pri odraslih je sicer na splošno slabša kot pri otrocih, vendar pa se v zadnjem času s pomočjo agresivne kombinirane terapije ter
uporabe rituksimaba, monoklonskega protitelesa proti celičnemu označevalcu CD20, stopnja preživetja izboljšuje (5,6). Med potencialne nove učinkovine prištevajo tudi zaviralce DNA metiltransferaze, protismiselne oligonukleotide, katerih tarča je c-Myc, zaviralce od ciklinov odvisnih kinaz ter zaviralce proteasoma (6).

1.2 APOPTOZA

Izraz apoptoza, ki prihaja iz starodavne grške besede *a-po-toe-sis* in pomeni »listje, ki pada z dreves«, so prvič uporabili Kerr, Wyllie in Currie leta 1972 (8,9). Apoptoza ali programirana celična smrt je fiziološka oblika celične smrti, ki ima pomembno vlogo pri razvoju in zagotavljanju tkivne homeostaze. Prisotna je vse od embrionalnega razvoja do smrti in je med drugim pomembna v procesu staranja, v nadzoru poškodovanih ali spremenjenih tkiv in ko združo tkivo odmre (9,10).

A apoptoza lahko sprožijo številni dejavniki, med drugim protitumorne učinkovine, gama in ultravijolčno sevanje, pomanjkanje dejavnikov preživetja (kot npr. interlevkin-1) in različnih citokinov, ki aktivirajo smrtne receptorje, kot so Fas in TNF receptorji. Preko različnih poti potem ti dražljaji sprožijo karakteristično pot izražanja mnogih genov (npr. genov Bcl-2 družine ali gena *p53*) (11).

Proces apoptoze se odraža v zaporedju značilnih morfoloških sprememb. V jedru poteče kondenzacija kromatina, ki se nato razporedi na periferiji le-tega. Pride tudi do krčenja citoplazme, kar povzroči, da se sama celica skrči ter izgubi stik s sosednjimi celicami. Jedro se razgradi in na membrani je mogoče opaziti majhne mehurčaste izbokline (gre za t.i. brstenje membrane). V zadnjih fazah apoptoze iz celic nastanejo številna apoptotska telesca, to so delci citoplazme, obdani s celično membrano, ki lahko vsebujejo jedrne fragmente (8,9,11). Membrana celič kljub nekaterim spremembam med procesom apoptoze ohrani svojo integriteto. Najpomembnejša sprememba membrane je izpostavitev negativno nabitega fosfolipida, fosfatidilserina, na celično površino. Fosfatidilserin se sicer nahaja na notranji strani lipidnega dvosloja, med procesom apoptoze pa se prestavi na zunanj stran membrane. S tem postane celični označevalce, preko katerega fagociti prepoznavajo apoptotično celično in jo odstanijo. Pri tem ne pride do razlivanja celične vsebine ter poškodb ali vnetja okoliškega tkiva, kot se to zgodi pri nekrozi. Slednjo skoraj vedno povzroči patološki stimulus, medtem ko je stimulus za apoptozo lahko patološki ali fiziološki (8,9).
1.2.1 Mehanizem apoptoze

Osrednjo vlogo v procesu apoptoze imajo kaspaze, ki so visoko specifični proteolizni encimi iz skupine cisteinskih proteaz. Kaspaze so v normalnih celicah prisotne kot neaktivni proencimi, ki pa se lahko hitro aktivirajo, bodisi z avtoproteolitično razgradnjo ali pa z razgradnjo preko drugih kaspaz, ki poteče na specifičnih aminokislinskih ostankih. Poznamo dve vrsti kaspaz, ki sodelujejo pri procesu apoptoze. Iniciatorske kaspaze (kaspaze 2, 8, 9, 10) pretvorijo različne signale v proteazno aktivnost, efektorske kaspaze (kaspaze 3, 6, 7) pa v celici odstranijo aktinske in lamininske proteine, ki oblikujejo celični skelet ter tako povzročijo morfološke spremembe in apoptotično celično smrt. Aktivacija kaspaz in s tem programirana celična smrt sta lahko povzročeni preko dveh različnih, a konvergentnih poti: aktivacija smrtnih receptorjev (ekstrinzična pot) in mitohondrijska (intrinzična) pot (slika 1) (8,9,11).

Slika 1: Ekstrinzična in intrinzična pot apoptoze. Ekstrinzična pot se sproži po vezavi proteina iz TNF družine na njegov receptor, kar vodi v aktivacijo kaspaze 8. Intrinzična pot pa se sproži preko notranjih dejavnikov in vodi v sproščanje citokroma c preko mitohondrijske membrane. Pride do aktivacije kaspaze 9. Obe poti se združita z aktivacijo kaspaze 3 in sledi apoptoza. (povzeto po (9,13))
Ekstrinzično pot sproži vezava ligandov na smrtne receptorje, ki se nahajajo na površini celice. Najbolj znana med njimi sta receptor za Fas (FasR) ter receptor za dejavnik tumorske nekroze (TNF-R1). Po vezavi liganda se na smrtno domeno receptorja veže adapterska beljakovina, kar povzroči nastanek signalnega kompleksa, imenovanega DISC (angl. death-inducing signaling complex). Sem se veže tudi prokaspaza 8, ki se znotraj nastalega kompleksa proteolitično aktivira v kaspazo 8, ki je osrednji mediator apoptoze. Ta nato aktivira ostale kaspaze, med drugim tudi kaspazo 3, glavno efektorsko kaspazo (8-10,12).

Intrinzično pot pa lahko sprožijo mnogi dejavniki (reaktivne kisikove spojine, poškodbe DNA, znižanje rastnih faktorjev...), ki vodijo v povečanje prepustnosti membrane mitohondrija ter sproščanje mnogih molekul iz medmembranskega prostora, tudi citokroma c. Slednji se veže z Apaf-1 (apoptotični proteaze-aktivirajoči faktor 1) ter prokaspazo 9 v apoptosom, kar sproži aktivacijo kaspaze 9, ki potem aktivira kaspazo 3. Intrinzično pot nadzira ravnovesje med antiapoptotičnimi in proapoptotičnimi proteini Bcl-2 družine (8-10,12).

1.2.2 Apoptoza in rak

Ker je apoptoza eden izmed ključnih procesov za zagotavljanje homeostaze v organizmu, ni presenetljivo, da se v primeru spremenjenega poteka le-te lahko razvijejo različne bolezni. Preobsežno odmiranje celic je prisotno pri ishemiji po akutnem miokardnem infarktu, kapi, nevrodegenerativnih boleznih (Alzheimerjeva ali Parkinsonova bolezen), avtoimunih boleznih (npr. multipla skleroza), sindromu pridobljene zmanjšane imunske aktivnosti (AIDS), bakterijskih infekcijah (npr. Neisseria meningitidis), hematoloških motnjah (npr. mielodisplastični sindrom) in pri s toksini povzročenih boleznih (alkoholni hepatitis). Zavrta apoptoza pa se kaže v mnogih tumornih, avtoimunih boleznih in arterosklerozi (9,10). Različne študije so pokazale s starostjo povezane spremembe v proteinih, ki regulirajo apoptozo, katere sovpadajo z večjo verjetnostjo za nastanek malignih, avtoimunih ali nevrodegenerativnih boleznih pri starejših ljudeh (10).

Akumulacija prevelikega števila malignih celic je rezultat prekomerne proliferacije in/ali nezadostne apoptoze. Tako mutacije, ki vodijo v inaktivacijo proapoptotičnih genov, kot tudi povečano izražanje in/ali aktivnost antiapoptotičnih proteinov povzročijo, da proces apoptoze v malignih celicah ne poteče (10). Najpogostejše spremembe predstavljajo
povečano izražanje antiapoptotičnih proteinov Bcl-2 družine ter mutacije v tumor zaviralnem genu p53 (9). Opazili pa so tudi povečano izražanje IAP (proteinov iz družine zaviralcev apoptoze), mutacije gena Fas ter mutacije v genih, ki kodirajo kaspaze (10). Večina učinkovin, ki se trenutno uporabljajo v terapiji raka, temelji na indukciji apoptoze preko obeh poti. Razvijajo se zaviralci kaspaz, zaviralci IAP, zaviralci antiapoptotičnih Bcl-2 proteinov ter zaviralci proteaz (10).

1.3 PROTEASOM IN ZAVIRALCI PROTEASOMA

Proteasom je multikatalitični kompleks, ki sodeluje z ubikvitinskim sistemom. Vključen je v različne biološke procese, med drugim tudi v napredovanje skozi celični cikel, popravilo DNA, apoptozo, imunski odziv, prenos signalov, transkripcijo in metabolizem. Proteasom 26S je sestavljen iz ene 20S podenote in dveh 19S podenote (slika 2) (14). 20S podenota predstavlja jedro, v katerem se proteini razgradijo. Je cilindrične oblike, zgrajena iz štirih heptamernih obročev, ki so sestavljeni iz dveh zunanjih α (struktturnih) ter dveh notranjih β (katalitičnih) podenot. Na notranji strani slednjih se nahajajo tri β podenote (β1, β2 in β5) s treoninom v aktivnem mestu, ki imajo hidrolitično aktivnost – imajo skupni mehanizem, a tri različne aktivnosti, in sicer kaspazi, tripsinu ter kimotripsinu podobno aktivnost (14). Vsak konec jedra je povezan z 19S regulatorno podenoto, ki prepozna substrate proteasoma. 19S podenota sestoji iz 19 proteinov in je razdeljena na bazni del (10 proteinov) ter pokrov (9 proteinov). Bazni del je nujen za vezavo in razvijanje ubikvitiniliranih proteinov, pokrov pa skrbi za deubikvitiniliranje substrata (14).

Slika 2: Shematski prikaz strukture proteasoma. (RPN: regulatorni ne-ATPazni del; RPT: ATPaza odvisni regulatorni del) (povzeto po (14))
Ker je proteasom ključni regulator razgradnje proteinov, predstavljajo zaviralci proteasoma edinstven pristop v terapiji rakavih obolenj (15). Strukturno so si precej različni in jih delimo v dve veliki skupini glede na to ali tvorijo kovalentno vez v aktivnem mestu. Vsi nekovalentni zaviralci so reverzibilni, kar pa velja tudi za nekatere kovalentne zaviralce. Med spada bortezomib (Velcade®), ki se v kliniki uporablja za zdravljenje multiplega mieloma (16). Bortezomib je analog dipeptida z molekulsko formulo \(\text{C}_{19}\text{H}_{25}\text{BN}_{4}\text{O}_{4} \), ki ima v svoji strukturi tudi boronsko kislinko. (slika 3) (15). Spada v skupino peptidnih boronatov, ki tvorijo tetraedrične adukte z aktivnim mestom, ki so nato še dodatno stabilizirani z vodikovo vezjo med N-terminalno amino skupino in eno izmed hidroksilnih skupin boronske kisline (16). Bortezomib selektivno in reverzibilno zavira kimotripsinu podobno aktivnost, kar mu omogoči zaviranje razgradnje proteinov, ki so vpleteni v regulacijo celičnega cikla in preživetje celice (15).

Slika 3: Struktura bortezomiba
1.4 STATMIN (STMN3)

Mikrotubuli so dinamični polimeri, sestavljeni iz dimernih podenot α/β tubulina, ki prispevajo k mnogim celičnim procesom, med drugim tudi k premikanju kromosomov in mitozi. Kar nekaj uspešnih protitumornih učinkov deluje na mikrotubule ali tubulinske podenote, tarče pa postajajo tudi proteini, ki regulirajo sestavo in razgradnjo mikrotubulov. Eden izmed teh regulatorih proteinov je fosfoprotein statmin/onkoprotein 18 (17).

Slika 4: Vloga statmina v mitotski fazi celičnega cikla. V začetku mitoze mikrotubuli (mt) depolimerizirajo in nato repolimerizirajo, da tvorijo delitveno vreteno. Inaktivacija statmina s fosforilacijo omogoči tvorbo delitvenega vretena in vstop v mitozo, medtem ko reaktivacija z defosforilacijo spodbudi razgradnjo le-tega in izhod iz mitoze (povzeto po (18)).
Izražanje statmina je povečano v mnogih rakavih obolenjih (levkemija, limfom, rak ploščatih celic, adenocistični rak, rak pljuč, hepatocelularni rak, adenokarcinom, rak prostate, sarkomi, glioma, rak dojke ter rak jajčnikov). Ugotovljeno je bilo, da so tumorji, kjer je ta protein prekomerno izražen, slabo diferencirani in imajo posledično slabšo prognozo, zato se statmin uporablja tudi kot biomarker za spremljanje stopnje napredovanja raka (17). Obstaja tudi močna korelacija med povečanim izražanjem statmina in celično proliferacijo, tako v normalnih kot v malignih celicah (17,18).

1.5 RGC-32

Protein RGC-32 ima pomembno vlogo v celičnem ciklu. Ugotovljeno je bilo, da deluje kot substrat in regulator od ciklina odvisne kinaze p34CDC2 (CDK2) ter tako spodbuja proliferacijo. Direktno se veže na p34CDC2 in poveča aktivnost kinaze, za vezavo pa je ključna fosforilacija RGC-32 in sicer na aminokislinem ostanku treonina na mestu 91 (21). Ker ima pomembno vlogo v celični proliferaciji, ima vpliv tudi na procese diferenciacije. Slednje nakazuje ena izmed študij, kjer so iskali tarče v s TGF-β inducirani diferenciaciji gladkih mišičnih celic. Analiza eksperimentov na mikromrežah je namreč

V različnih študijah so bile opažene spremembe v izražanju RGC-32 proteina v tumorjih. Tako se je v raku debelega črevesa, jajčnikov, dojke, mehurja, pljuč ter prostate RGC-32 povečano izražal, medtem ko so v napredovalih stopnjah astroцитov opazili zmanjšanje izražanja. Povečano izražanje rgc-32 gena je bilo opaženo v kožnem T-celičnem limfomu, zmanjšano izražanje pa v multiplem mielomu. Tudi študije izražanja gena v invazivnih tumorjih so dale nasprotno rezultate, in sicer je bilo izražanje povečano v raku dojke z osteolitičnimi metastazami, zmanjšano pa v metastaznem raku jeter in v na androgene odpornem metastaznem raku prostate (19,20).

Vsi ti podatki kažejo na to, da je vloga rgc-32 gena v rakavih oboljenjih zelo kompleksna in še ni povsem raziskana. Potrebne so še nadaljnje študije, ki bi osvetlile njegovo natančno funkcijo.
1.6 ATF3
Protein ATF3 (aktivacijski transkripcijski faktor 3) je član družine ATF3/CREB (ang. ATF/cyclic AMP response element-binding) transkripcijskih faktorjev. Slednja predstavlja veliko skupino transkripcijskih faktorjev, ki imajo v osnovni regiji levcinsko zadrgo (bZIP; angl. basic-region leucine zipper). Osnovna regija v tej domeni je odgovorna za specifično vezavo DNA, medtem ko je t.i. levcinska zadrga odgovorna za oblikovanje homodimerov ali heterodimerov z drugimi bZIP-vsebujočimi proteini (24).

Aminokislinsko zaporedje ATF3 vsebuje 181 aminokislins, njegova molekulska masa pa je 22 kD. ATF3 dimerizira z drugimi ATF/CREB proteini, glede na vrsto promotorja pa lahko ti heterodimeri delujejo kot zaviralci ali aktivatorji transkripcije (24).

Atf3 gen je adaptivno-odzivni gen, ki sodeluje v različnih celičnih procesih z namenom prilagoditve na znotraj- ali zunajcelične spremembe (24). Njegovo izražanje je v mirnih celicah nizko, v prisotnosti stresnih signalov pa se močno poveča. Izražanje povečajo tako karcinogeni, DNA poškodbe, hipoksija in anoksija, kot tudi signali, ki ne ustrezajo tipični definiciji stresnega signala – npr. adipocitotkini ali prisotnost signala za napredovanje skozi S-fazo celičnega cikla (25).

1.6.1 ATF3 in rakava obolenja

Atf3 gen ima pomembno vlogo v tumorogenezi, saj regulira ravnotežje med proliferativnimi in apoptotičnimi signali, ki prispevajo k razvoju raka. Odvisno od vrste celice lahko igra atf3 različne vloge. To lepo prikazuje študija, kjer so ugotovili, da je atf3 okrepil s stresom povzročeno apoptozo v netransformiranih celičah humane celične linije raka dojke (MCF10A). Nasprotno pa je izražanje atf3 v maligni celični liniji (MCF10CA1a) preprečilo s stresom inducirani zastoj celičnega cikla ter pospešilo gibljivost in invazivni potencial malignih celic. MCF10A in MCF10CA1a sta izogeni celični liniji z istim genetskim ozadjem, ki se razlikujeta le v spremembah, nastalih med maligno transformacijo, kar nakazuje, da stopnja malignosti vpliva na funkcijo atf3 (26).

ATF3 kot onkogen
Povečano izražanje atf3 gena v številnih tumorjih nakazuje, da morda deluje kot onkogen. Povečano izražanje so opazili v mnogih tumorjih dojke, potencialno zaradi pomnožitve gena. Atf3 je namreč lokaliziran na kromosomu 1q32.3, znotraj amplikona 1q, regiji, ki je
najpogosteje pomnožena v tumorju dojke (26). Ugotovljeno je bilo tudi, da TGF-β v malignih celicah raka dojke sproži izražanje atf3 gena, ki nato poveča izražanje tarčnih genov TGF-β. TGF-β je protein, ki nadzoruje celično proliferacijo, diferenciacijo ter druge procese v večini celic, v rakavih celicah pa so njegove signalne poti motene in zato prispeva k njihovi gibaljivosti ter invazivnemu potencialu. Prav tako so ugotovili, da atf3 poveča izražanje samega tgf-β gena in tako ustvarja pozitivno povratno zanko za signalizacijo TGF-β (25).

ATF3 kot tumor zaviralec
V nasprotju z zgornjimi študijami, pa so nekatere druge raziskave nakazale, da atf3 spodbuja apoptozo in zmanjša invazivni potencial različnih celičnih linij ter tako zavira tumorogenezo. V eni izmed študij so ugotovili, da se je po uporabi različnih kemopreventivnih substanc kot so sulindak sulfid, troglitazon in resveratrol, povečalo izražanje atf3 v HCT-116 celicah kolorektalnega raka, ki je posledično vodilo v spremenjeno izražanje nekaterih genov, povezanih z invazivnostjo celic (32).

Tako pristop pridobitve kot izgube funkcije *atf3* v mišjih fibroblastih sta pokazala, da je *atf3* proapoptotičen, saj je zaviral napredovanje skozi celični cikel in sicer (vsaj delno) preko vpliva na cikline – vezal se je na promotor ciklina D1, sicer regulatorja celičnega cikla, in preprečil njegovo transkripcijo. *Atf3* je preko spodbujanja apoptoze tudi zavrl z Ras-om inducirano tumorogenezo, izguba funkcije pa je vodila v povečano proliferacijo Ras transformiranih celic (34). Ugotovili so tudi, da se protein ATF3 pod vplivom genotoksičnega stresa (doksorubicin, kampotekin, aktinomicin D) direktno veže na C-terminalni del proteina p53. Tako prepreči njegovo ubikvitinacijo in razgradnjo ter posledično poveča njegovo delovanje. Nasprotno pa izguba ATF3 ovira proapoptotično in tumor zaviralno funkcijo p53 (35,36).

Vse zgoraj opisane študije potrjujejo dihotomno vlogo ATF3 v razvoju raka. Zdi se, da *atf3* gen, ki je povečano izražen v različnih tumorjih, prispeva k tumorogenezi, s stresom inducirani *atf3* pa le-to zavira. Razlog temu so najverjetneje različni učinki *atf3* na njegove tarčne gene. Nadaljnje raziskovanje in razumevanje molekularnega ozadja, ki določa vlogo ATF3 kot tumor zaviralca ali onkogena bo lahko omogočilo racionalno načrtovanje učinkov v prihodnosti.
2 NAMEN DELA

Namen našega dela je doprinesti k razumevanju molekularnih mehanizmov, ki so odgovorni za selektivno toksičnost spojine 15 za celice Burkittovega limfoma. Zato bomo v prvem delu diplomske naloge preverjali izražanje genov *stmn3*, *rgc-32* in *atf3* z metodo RT-PCR v celicah Ramos (celice Burkittovega limfoma) in sicer v različnih časovnih točkah po izpostavljanju spojini 15 ter bortezomibu, ki je znan zaviralec proteasoma. Izražanje teh genov bomo hkrati preverjali v celicah U937, za katere spojina 15 ni bila toksična. V primeru, da bomo potrdili razlike v izražanju genov, bomo v drugem delu diplomske naloge poskušali osvetliti signalizacijske poti, ki so vpletene v regulacijo teh genov. V ta namen bomo celice Ramos in U937 tretirali z zaviralci signalnih poti ter preverjali ali v katerem primeru pride do zmanjšanega izražanja genov.

V zadnjem segmentu bomo ugotavljali citotoksičnost spojine 15 za limfoblastoidne celične linije, ki so se predhodno izkazale kot dobri modeli za iskanje tarč. V primeru, da bo naša spojina za katero od teh celičnih linij citotoksična, bomo tudi na teh linijah ovrednotili izražanje izbranih genov.
3 MATERIALI IN METODE

3.1 MATERIALI

3.1.1 Kemikalije

<table>
<thead>
<tr>
<th>Kemikalija</th>
<th>Proizvajalec</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-merkaptoetanol</td>
<td>Sigma – Aldrich, MO, ZDA</td>
</tr>
<tr>
<td>absolutni etanol (99 %)</td>
<td>KEFO, Ljubljana, Slovenija</td>
</tr>
<tr>
<td>antibiotik (streptomycin, penicilin) in antimikotik (amfotericin B), raztopina</td>
<td>Sigma – Aldrich, MO, ZDA</td>
</tr>
<tr>
<td>bortezomib</td>
<td>Janssen-Cilag Internacional NV, Beerse, Belgija</td>
</tr>
<tr>
<td>DMSO (dimetilsulfoksid)</td>
<td>Merck Chemicals, Darmstadt, Nemčija</td>
</tr>
<tr>
<td>etanol 70 %</td>
<td>Merck Chemicals, Darmstadt, Nemčija</td>
</tr>
<tr>
<td>goveji serumski albumin (BSA)</td>
<td>Sigma – Aldrich, MO, ZDA</td>
</tr>
<tr>
<td>zaviralec RNAz</td>
<td>Ambion, Invitrogen, California, ZDA</td>
</tr>
<tr>
<td>kloroform</td>
<td>MÉRCK, Whitehouse Station, NY, ZDA</td>
</tr>
<tr>
<td>medij RPMI 1640</td>
<td>Sigma – Aldrich, MO, ZDA</td>
</tr>
<tr>
<td>oligonukleotidni začetniki za gen 18sRNA (PrimeTime™ Std qPCR Assay)</td>
<td>IDT®, Integrated DNA Technologies, Inc., Leuven, Belgija</td>
</tr>
<tr>
<td>oligonukleotidni začetniki za gen ATF3 (PrimeTime™ Std qPCR Assay)</td>
<td>IDT®, Integrated DNA Technologies, Inc., Leuven, Belgija</td>
</tr>
<tr>
<td>oligonukleotidni začetniki za gen RGC-32 (PrimeTime™ Std qPCR Assay)</td>
<td>IDT®, Integrated DNA Technologies, Inc., Leuven, Belgija</td>
</tr>
<tr>
<td>oligonukleotidni začetniki za gen STMN3 (PrimeTime™ Std qPCR Assay)</td>
<td>IDT®, Integrated DNA Technologies, Inc., Leuven, Belgija</td>
</tr>
<tr>
<td>oligonukleotidni začetniki (F in R) za gena 18sRNA in STMN3</td>
<td>KicqStart™ Primers for SYBR® Green I RT-qPCR, Sigma – Aldrich, MO, ZDA</td>
</tr>
<tr>
<td>raztopina tripanskega modrila (angl. Trypan Blue solution)</td>
<td>Sigma – Aldrich, MO, ZDA</td>
</tr>
<tr>
<td>Trizol®</td>
<td>Invitrogen, California, ZDA</td>
</tr>
</tbody>
</table>
3.1.2 Reagenti

<table>
<thead>
<tr>
<th>Reagent</th>
<th>Proizvajalec</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cell Titer 96®AQueous One Solution Reagent (reagent za test celične metabolne aktivnosti)</td>
<td>Promega, Madison, WI, ZDA</td>
</tr>
</tbody>
</table>

3.1.3 Kompleti

<table>
<thead>
<tr>
<th>Komplet</th>
<th>Proizvajalec</th>
</tr>
</thead>
<tbody>
<tr>
<td>High Capacity cDNA Reverse Transcription Kit</td>
<td>Applied Biosystems Inc., Foster City, California, ZDA</td>
</tr>
<tr>
<td>Purelink™ RNA Mini Kit</td>
<td>Ambion, Invitrogen, California, ZDA</td>
</tr>
<tr>
<td>EvaGreen® qPCR Mix Plus</td>
<td>Solis BioDyne, Tartu, Estonija</td>
</tr>
<tr>
<td>Kapa Probe Fast Universal qPCR Kit</td>
<td>Kapa BioSystems, Inc., Woburn, MA, ZDA</td>
</tr>
</tbody>
</table>

3.1.4 Gojišča

<table>
<thead>
<tr>
<th>Gojišče</th>
<th>Sestava</th>
</tr>
</thead>
</table>
| za celice Ramos | 500 mL RPMI-1640
50 mL FBS
5,5 mL 200 mM L-glutamin
5,5 mL antibiotik/antimikotik 100x
0,5 mL 50 mM 2-merkaptoetanol |
| za limfoblastoidne celične linije | 500 mL RPMI-1640
50 mL FBS
11 mL 200 mM L-glutamin
5,5 mL antibiotik/antimikotik 100x |
3.1.5 Laboratorijska oprema

<table>
<thead>
<tr>
<th>Aparatura/Material</th>
<th>Proizvajalec</th>
</tr>
</thead>
<tbody>
<tr>
<td>aparatura za PCR in reverzno transkripcijo 2720 Thermal Cycler</td>
<td>Applied Biosystems, California, ZDA</td>
</tr>
<tr>
<td>aparatura za RT-PCR LightCycler 480</td>
<td>Roche Applied Science, Indianapolis, ZDA</td>
</tr>
<tr>
<td>avtoklav</td>
<td>A-21, Kambič laboratorijska oprema, Semič, Slovenija</td>
</tr>
<tr>
<td>avtomatski števec za štetje celic (Countess™)</td>
<td>Invitrogen, Carlsbad, ZDA</td>
</tr>
<tr>
<td>centrifuge</td>
<td>Tehtnica CENTRIC 322A, Železniki, SLO Tehtnica CENTRIC 150, Železniki, SLO Eppendorf centrifuge 5415 R, Hamburg, Nemčija</td>
</tr>
<tr>
<td>centrifugirke (15 in 50 mL)</td>
<td>Sarstedt, Nümbrecht, Nemčija</td>
</tr>
<tr>
<td>hemocitometer</td>
<td>Brand Neubauer (BNlau Brand)</td>
</tr>
<tr>
<td>hladilnik/zamrzovalnik</td>
<td>Gorenje, Velenje, Slovenija</td>
</tr>
<tr>
<td>inkubator</td>
<td>Heraus Holding GmbH, Hanau Nemčija</td>
</tr>
<tr>
<td>invertni svetlobni mikroskop (Olympus CK40)</td>
<td>Olympus Optical Co. GmbH, Hamburg, Nemčija</td>
</tr>
<tr>
<td>komora z laminarnim pretokom zraka (LAF)</td>
<td>Waldner Electronics FAZ 3, Wangen, Nemčija</td>
</tr>
<tr>
<td>komora za delo z RNA in DNA – DNA/RNA UV-cleaner UVC/T-M-AR</td>
<td>Biosan, Riga, Latvija</td>
</tr>
<tr>
<td>krioviale</td>
<td>TPP, Trasadingen, Švica</td>
</tr>
<tr>
<td>krovnna stekla</td>
<td>Assistent, Sondheim, Nemčija</td>
</tr>
<tr>
<td>LightCycler480 Multiwell plate 384, white</td>
<td>Roche Applied Science, Indianapolis, ZDA</td>
</tr>
<tr>
<td>Light Cycler 480 Sealing Foli</td>
<td>Roche Applied Science, Indianapolis, ZDA</td>
</tr>
<tr>
<td>mikrocentrifugirke (0,5, 1,5 in 2mL)</td>
<td>Sarstedt, Nümbrecht, Nemčija</td>
</tr>
<tr>
<td>mikrotitrske ploščice za gojenje celičnih kultur (z 12, 24 ali 96 vdolbinami)</td>
<td>TPP, Trasadingen Švica</td>
</tr>
<tr>
<td>mikrotitrski čitalec (Safire²™ Genios)</td>
<td>Tecan, Genios, Zürich, Švica</td>
</tr>
<tr>
<td>nastavki za pipete (do 10, 200, 300 ali 1000</td>
<td>Sarstedt, Nümbrecht, Nemčija</td>
</tr>
</tbody>
</table>
19

3.1.6 Humane celične linije
Humane celične linije izvirajo iz malignega človeškega tkiva. So nesmrtne, kar pomeni, da so pridobile sposobnost neskončne delitve. To je tudi njihova glavna prednost v primerjavi s primarnimi celičnimi kulturami, katerih število delitev in s tem življenjska doba sta omejeni. Pri eksperimentalnem delu smo uporabljali celične linije Ramos, U937 ter limfoblastoidne celične linije.

RAMOS
Ramos je celična linija humanega Burkittovega limfoma, pridobljena iz peritonealne tekočine 3-letnega kavkaškega dečka leta 1972. Celice so bile EBV negativne in izražajo nezreli fenotip limfocitov B. So okrogle celice, ki rastejo v suspenziji. Optimalna koncentracija je $0.5 - 1.5 \times 10^6$ celic/mL. Podvojevalni čas je približno 48 ur.

U937
Celice U937 so monocitne celice, ki izvirajo iz difuznega histiocitnega limfoma in so bile pridobljene iz plevalne efuzije 37-letnega moškega. So okrogle do mnogokotne oblike, ki
rastejo posamično v suspenziji. Optimalna koncentracija je 0,1 – 1,0 x 10^6 celic /mL. Podvojevalni čas je približno 30 do 40 ur.

Limfoblastoidne celične linije (LCL; ang. lymphoblastoid cell lines)
LCL celične linije predstavljajo humane limfoblastoidne celične linije. Pridobljene so iz periferne krvi zdravih posameznikov, iz katere so izolirali limfocite B ter z EBV naredili nesmrtne celične linije. LCL celične linije je doniral prof. Gurwitz (medicinska fakulteta Tel-Aviv, Izrael).

3.2 METODE DELA S CELICAMI
Pri delu s celicami moramo vedno zagotavljati sterilne pogoje. V ta namen delo opravljamo v komori z laminarnim pretokom zraka (komora LAF), ki je nameščena v prostorih, kjer velja poseben režim čistoče (uporaba zaščitne halje, obutve in rokavic iz lateksa). LAF komora zagotavlja sterilne pogoje z omejenim dostopom ter stalnim pretokom preko HEPA filtrov filtriranega zraka na delovno površino (zrak onemogoča dostop kontaminantom in prahu). Komoro pred uporabo razkužimo s polurnim obsevanjem z ultravijolično svetlobo, tik pred pričetkom dela pa površine komore očistimo s 70 % etanolom. Pred vnosom v komoro s 70 % etanolom razkužimo tudi ves material in pripomočke, ter zaščitne rokavice (slanjve večkrat razkužimo tudi med samim delom).

3.2.1 Gojenje celic
Celične linije RAMOS, U937 in LCL smo gojili in redčili v vsebnikih za gojenje celičnih kultur ali ploščicah za celične kulture v inkubatorju, ki zagotavlja ustrezne pogoje za rast celic (temperatura 37°C, 100 % vlažnost ter atmosfera s 5 % CO₂).

3.2.2 Subkultiviranje celičnih linij
Za doseganje ustreznega števila in optimalne rasti celic smo jih morali subkultivirati vsake dva do tri dni, tako da smo jih redčili z medijem RPMI, segretim na 37°C.

3.2.3 Odmrzovanje celic
Celične kulture shranjujemo v kriovialah pri -80°C v zamrzovalniku ali pri -180°C v Dewarjevi posodi s tekočim dušikom. Celice so shranjene v 10 % DMSO, ki je citotoksičen, zato se mora postopek odmrzovanja izvesti na hitro.
Kriovialo s celicami smo takoj prenesli iz zamrzovalnika oz. tekočega dušika v vodno kopel, segreto na 37°C in jo rahlo stresali, da smo pospešili odmrzovanje. Odmrznjeno vsebino smo prenesli v 15 mL centrifugirko, v katero smo predhodno odpipetirali 10 mL medija RPMI, segretega na 37°C. Suspenzijo smo centrifugirali 5 minut pri 1200 obr./min. Nastali supernatant smo odpipetirali in celice resuspendirali v ustreznem volumnu medija RPMI, segretega na 37°C. Celično suspenzijo smo prenesli v vsebnik za gojenje celičnih kultur in jo inkubirali v CO₂ inkubatorju.

3.3 ŠTETJE CELIC

Ročno štetje celic
Celice smo šteli s pomočjo hemocitometra pod invertnim mikroskopom. Pri tej metodi preštejemo celice v znanem volumnu in s pomočjo tega podatka izračunamo koncentracijo celic v suspenziji (št. celic/mL). Pod sterilnimi pogoji smo celično suspenzijo najprej resuspendirali, nato pa odpipetirali 10 µL celične suspenzije in jo prenesli v mikrocentrifugirko. Dodali smo 10 µL tripanskega moderla, ki obarva poškodovane in mrtve celice modro ter dobro premešali s pipeto. 10 µL pripravljene mešanice smo nanesli na hemocitometer. Nato smo pod mikroskopom prešteli število živih celic v štirih velikih kvadratih ter izračunali koncentracijo po spodnji enačbi:

\[\text{št. celic/mL} = \frac{A + B + C + D}{4} \times f \times 10^4 \]

\(A, B, C, D \) - št. živih celic v posameznem polju hemocitometra
\(f \) - faktor redčenja zaradi redčitve z gojiščem in mešanja tripanskega moderla
\(10^4 \) - volumen celične suspenzije na kvaadratom (1/mL)

Enačba I: Računanje koncentracije celic s hemocitometrom

Avtomatsko štetje celic
3.4 TEST ZA DOLOČANJE CELIČNE METABOLNE AKTIVNOSTI Z REAGENTOM MTS

Test MTS je kolorimetrična metoda za določanje števila preživelih celic v testu proliferacije ali citotoksičnosti. Reagent je sestavljen iz MTS-reagenta [3-(4,5-dimetiltiazol-2-il)-5-(3-karboksimetoksifenil)-2-(4-sulfofenil)-2H-tetrazol], v obliki soli in fenazin etosulfata (angl. phenazine ethosulfate; PES), ki je reagent za prenos elektronov. PES ima okrepljeno kemijsko stabilnost, ki mu omogoča, da z MTS-reagentom tvori stabilno raztopino. Ta tetrazolijeva sol prehaja v celice, kjer se pod vplivom reducirajočih reagentov v mitohondrijih reducira do formazana (slika 5). Količina nastalega formazana je sorazmerna številu živih metabolno aktivnih celic in jo lahko merimo spektrofotometrično pri 490 nm (37).

Slika 5: Shematski prikaz celičnega metabolizma reagenta MTS. Redukcija MTS v formazan v metabolno aktivnih celicah je posledica delovanja dehidrogenaz, ki tvorijo reducirajoče reagente, npr. NADH ali NADPH. NADH prenese svoj elektron na reagent za prenos elektronov (angl. electron transfer reagent; ETR), kot npr. PES v našem primeru in ga tako reducira. Ta reducirani reagent za prenos elektronov lahko direktno reagira z MTS, ga reducira in nastane močno obarvan formazan (povzeto po (37)).

Postopek:

Najprej smo si pripravili suspenzijo izbrane celične kulture v koncentraciji 3,3 x 10^5 celic/mL v mediju RPMI 1640. Suspenzijo celic smo alikvitirali po 1000 µL na ustrezen mikrotitrsko ploščico. LCL celične linije smo nato tretirali s spojino 15 v koncentraciji 75 µM. Kot kontrolo smo uporabili netretirano celično kulturo oz. celično kulturo, ki smo ji dodali le DMSO. Po tretiranju smo celice v triplikatu po 100 µL prenesli na mikrotitrsko
ploščico s 96 vdolbinicami. Inkubacija je potekala v inkubatorju za gojenje celic (37°C, 5 % CO₂). Po 48 urah smo v vsako vdolbinico dodali 10 µL reagenta MTS in inkubirali še 2-3 ure v inkubatorju. Po končani inkubaciji smo z mikrotitrskim čitalcem Tecan Safire² izmerili absorbancio nastalega formazona pri 492 nm. Večja kot je bila izmerjena absorbancio, večja je bila metabolna aktivnost celic. Istočasno smo test izvedli tudi z medijem RPMI (brez celic) in 10 µL MTS, s čimer smo določili absorbancio ozadja (slepa kontrola) in jo odšteli od absorbancije vzorcev.

% metabolne aktivnosti = \(\frac{c(\text{vzorca}) - c(\text{slepe})}{c(\text{kontrole}) - c(\text{slepe})} \times 100 \)

Enačba 2: Računanje odstotka metabolne aktivnosti celic

3.5 REAKCIJA POMNOŽEVANJA S POLIMERAZO V REALNEM ČASU
Reakcija pomnoževanja s polimerazo v realnem času (RT-PCR) je metoda, ki nam omogoča in vitro pomnoževanje DNA in spremljanje koncentracije DNA v vsakem ciklu (v realnem času). Omogoča nam, da potem določimo začetno koncentracijo DNA v vzorcu.

Pred izvajanjem RT-PCR reakcije smo morali najprej celice lizirati in izolirati RNA. Ker so molekule RNA precej nestabilne, RNAze v zraku in na koži pa jih hitro razgradijo, je potrebno za analitiko izražanja genov z RT-PCR RNA predhodno še prepisati v komplementarno zaporedje DNA.

3.5.1 Izolacija RNA
Ker je bil naš cilj merjenje izražanja genov, smo morali izmeriti količino mRNA v celicah, saj s tem določamo tudi izražanje le-teh.

Za hitrejšo izolacijo smo uporabili komercialni reagent Trizol. Je enofazna raztopina fenola in gvanidin izocianata, ki med celico lizo ohranja integriteto RNA molekul, hkrati pa celico uniči in razgradi njene komponente. Sledila je ekstrakcija s kloroformom, ki omogoči, da RNA ostane v vodni fazi, DNA in proteinji pa v organski fazi. Isonirano RNA smo očistili s pomočjo kolon (Purelink™ RNA Mini Kit, Ambion), ki vsebujejo membrane iz silikagela, na katere se veže RNA. S spiranjem se očistijo nečistote, na koncu pa se RNA eluirja z vodo.
Postopek:
Celično kulturo smo prenesli v 15 mL centrifugirke ter jo centrifugirali 5 minut pri 2300-2400 obratih/min. Supernatant smo odpipetirali ter peleti dodali 1 mL Trizola. Suspenzijo smo dobro resuspendirali ter prenesli v mikrocentrifugirko, ki smo jo takoj dali na led. Po končanem delu smo vzorce do čiščenja shranjevali v zamrzovalniku pri -80°C. Delo je potekalo v posebni RNA komori, katere površine smo predhodno razkužili z zaviralcem RNAz ter 15 minut obsevali z ultravijolično svetlobo. Z zaviralcem RNAz smo razkužili tudi vse reagente in pripomočke.

3.5.2 Reverzna transkripcija
Kot prej omenjeno, reakcijo reverzne transkripcije uporabimo za pripravo komplementarne DNA iz RNA zaporedja. Prepis omogoča poseben encim, imenovan reverzna transkriptaza, ki jo v naravi najdemo v nekaterih virusih (npr. HIV). Reakcija poteka pri konstantni temperaturi, količina nastale cDNA pa je po končani reakciji enaka količini matične RNA.

Postopek:
Ker pri postopku reverzne transkripcije še vedno rukujemo z RNA, je delo tudi tukaj potekalo v posebni RNA komori, katere površine smo predhodno razkužili z zaviralcem.
RNAz ter 15 minut obsevali z ultravijolično svetlobo. Z zaviralcem RNAz smo razkužili tudi vse reagente in pripomočke.

Odtaljene vzorce z očiščeno RNA smo premešali z vorteksiranjem. Izračunali smo potrebne redčitve vzorcev, da smo dobili potrebno končno koncentracijo zmesi za reverzno transkripcijo. Ta koncentracija je optimalna za kasnejšo aplikacijo na RT-PCR. Uporabili smo mikrocentrifugirke, vanje smo najprej odpipetirali vodo, nato pa še vzorce. Končni volumen redčitve je bil odvisen od količine RNA, ki smo jo želeli prepisati (običajno 400 ng, pa tudi 600 ng, 800 ng...) Potrebne volumne vzorcev in vode smo izračunali po naslednjih enačbah:

\[V_{\text{vzorca}} = \frac{m\ (RNA)}{c(\text{vzorca})} \quad \text{in} \quad V(H2O) = V(\text{zmesi za reakcijo}) - V(\text{vzorca}) \]

Eneačba 3: Izračun volumenov vzorca in vode, potrebnih za reakcijo reverzne transkripcije

Preglednica I: Primer izračuna redčitve vzorca za reverzno transkripcijo. V tem primeru je bila izbrana količina za prepis 600 ng RNA, končni volumen na reakcijo pa 15 µL.

<table>
<thead>
<tr>
<th>Vzorec</th>
<th>C_{RNA} [ng/µL]</th>
<th>V_{vzorca} [µL]</th>
<th>V_{vode} [µL]</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>233</td>
<td>2,58</td>
<td>12,42</td>
</tr>
<tr>
<td>8</td>
<td>260</td>
<td>2,31</td>
<td>12,69</td>
</tr>
<tr>
<td>9</td>
<td>202,1</td>
<td>2,97</td>
<td>12,03</td>
</tr>
</tbody>
</table>

Nato smo pripravili osnovno zmes (mastermix), ki vsebuje reverzno transkriptazo, nukleotide, naključne začetne nukleotide, zaviralce RNAz ter reagenčni pufer (glej preglednico II). Mastermix smo dobro premešali s pipeto, dodali potrebno količino v vsak vzorec, ponovno premešali in na kratko centrifugirali. Vzorce smo vstavili v napravo za PCR reakcijo ter zagnali program za reverzno transkripcijo (preglednica III). Po končanem programu smo vzorce takoj uporabili za RT-PCR ali pa smo jih shranili v zamrzovalniku na -20°C.
Preglednica II: Sestavine osnovne zmesi za reakcijo reverzne transkripcije. V preglednici je prikazan tudi primer izračuna količine osnovne zmesi za 600 ng RNA.

<table>
<thead>
<tr>
<th>Komponenta</th>
<th>Volumen/reakcijo po predpisu [µL]</th>
<th>Volumen/reakcijo [µL]</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 x RT Buffer</td>
<td>2.0</td>
<td>3</td>
</tr>
<tr>
<td>25x dNTP Mix (100mM)</td>
<td>0.8</td>
<td>1.2</td>
</tr>
<tr>
<td>10 x RT Random Primers</td>
<td>2.0</td>
<td>3.0</td>
</tr>
<tr>
<td>Multiscribe Reverse Transcriptase</td>
<td>1.0</td>
<td>1.5</td>
</tr>
<tr>
<td>RNAse inhibitor</td>
<td>1.0</td>
<td>1.5</td>
</tr>
<tr>
<td>Nuclease-free H₂O</td>
<td>3.2</td>
<td>4.8</td>
</tr>
<tr>
<td>Skupni volumen/reakcijo</td>
<td>10</td>
<td>15</td>
</tr>
</tbody>
</table>

Preglednica III: Program reakcije reverzne transkripcije

<table>
<thead>
<tr>
<th></th>
<th>1.korak</th>
<th>2.korak</th>
<th>3.korak</th>
<th>4.korak</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperatura (°C)</td>
<td>25</td>
<td>37</td>
<td>85</td>
<td>4</td>
</tr>
<tr>
<td>Čas</td>
<td>10 min</td>
<td>120 min</td>
<td>5 sek</td>
<td>∞</td>
</tr>
</tbody>
</table>

3.5.3 Verižna reakcija s polimerazo v realnem času

Verižna reakcija s polimerazo v realnem času nam omogoča in vitro pomnoževanje DNA s hkratno kvantifikacijo novo nastale DNA. Prav tako kot klasična PCR reakcija nam omogoča detekcijo in kvantifikacijo (v smislu absolutnega števila kopij ali pa relativne vrednosti glede na začetno DNA) specifičnega segmenta DNA molekule. Njena prednost je v tem, da lahko DNA za razliko od klasične PCR reakcije kvantificiramo po vsakem ciklu. To lahko dosežemo z uporabo nespecifičnih fluorescenčnih sond, ki se interkalirajo v nastalo DNA in fluorescirajo ali pa uporabimo specifične sonde v obliki oligonukleotidov. Ti so označeni s fluorescenčnimi barvili, ki emitirajo svetlobo šele po hibridizaciji na komplementarno DNA zaporedje in odstranitvi dušilke.

Princip RT-PCR

Princip RT-PCR je v bistvu enak tistemu za klasično PCR reakcijo in sestoji iz aktivacije encima, prileganja oligonukleotidov ter pomnoževanja specifičnega odseka DNA. Za izvajanje reakcije je torej potreben ciklični termostat. Ta potem spreminja temperaturo po
vnaprej nastavljenem programu. V diplomskem delu smo uporabili dva različna kompleta za RT-PCR reakcijo.

1. EvaGreen® qPCR Mix Plus (Solis BioDyne)
 Reakcijsko zmes najprej segrejemo na 95°C za 15 minut, da aktiviramo encim. Nato sledijo trije koraki, ki sestavljajo en cikel RT-PCR reakcijo. Cikel se prične z denaturacijo dvovijačne DNA s segrevanjem na 95°C za 15 sekund. Tu se razdrejo vodikove vezi med obema verigama DNA. Nato temperatujo za 20 sekund spustimo na optimalno temperaturo začetnih nukleotidov, t.j. 60°C, saj se lahko stabilen hibrid začetni nukleotid – DNA matrica tvori le pri zelo dobrem ujemanju baz. Na ta hibrid se potem veže polimeraza in prične s sintezo komplementarne verige. Za proces podaljševanja DNA verige dvignemo temperaturo na 72°C za 20 sekund. DNA polimeraza sintetizira novo, komplementarno DNA verigo med obema začetnima nukleotidoma v smeri 5' proti 3'. V optimalnih pogojih se DNA podvoji, torej količina eksponentno narašča z vsakim ciklom.
 Pri EvaGreen® postopku uporabimo nespecifične fluoresčne sonde, ki interkalirajo v novo nastalo DNA in fluorescirajo.

2. Kapa Probe Fast Universal qPCR Kit (Kapa BioSystems)
 V reakcijsko zmes smo dodali tudi sonde označene s fluoresčnim barviloc. Sonde so sestavljene iz oligonukleotida, na katerega sta vezana še fluoresčno barvilo ter dušilec. Dokler sta ti dve molekuli na istem oligonukleotidu, dušilec onemogoča fluoresciranje barvila. Po razgradnji te sonde se dušilec in barvilo ločita in barvilo po ekscitaciji z laserjem fluorescirajo, kar zaznamo z detektorjem. Sonde se sicer priležejo na DNA matrico v istem času kot začetni oligonukleotidi. Ko DNA polimeraza sintetizira novo DNA verigo in doseže sonde, jih s svojim 5'-3' eksonukleaznim delom razgradi, kar loči barvo od dušilca in na detektorju lahko zaznamo fluorescenco.
Kvantifikacija rezultatov

Ker je fluorescenca direktno proporcionalna količini pomnožene DNA, lahko relativne koncentracije spremljamo z risanjem grafa fluorescencence v odvisnosti od cikla. Določimo mejo kvantifikacije in cikel, v katerem jo fluorescenca vzorca preseže, imenujemo pražni cikel (ang. cycle threshold – C\textsubscript{T}). Tako lahko potem določimo relativno koncentracijo DNA. Teoretično bi se naj količina DNA podvojila v vsakem ciklu. Ker pa niso vsi začetni nukleotidi enako učinkoviti, je učinkovitost reakcije redko 2. Zato vedno izračunamo učinkovitost reakcije (E), relativna koncentracija pa je nato izračunana po enačbi \(c(\text{relativna}) = E^C \). Količino DNA v vzorcu nato izračunamo iz standardne krivulje.

Standarde pripravimo tako, da serijsko redčimo znane količine DNA. Pri kvantifikaciji pa je potrebno upoštevati tudi biološko variabilnost med vzorci. Zato izračunamo koncentracijo DNA normaliziramo na koncentracijo hišnega gena (ang. housekeeping gen) (glej preglednico IV). Tega izberemo tako, da se njegovo izražanje v vzorcu skoraj ne spreminja (oz. so razlike v izražanju le zaradi prisotnosti človeškega faktorja). Pri našem delu smo uporabili hišni gen 18sRNA.

Preglednica IV: Primer normalizacije na hišni gen. Izračunano koncentracijo preučevanega gena delimo s koncentracijo hišnega gena.

<table>
<thead>
<tr>
<th>Vzorec</th>
<th>(C_{\text{ATF3}})</th>
<th>(C_{\text{18sRNA}})</th>
<th>(C_{\text{ATF3}}/C_{\text{18sRNA}})</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2,70386317</td>
<td>1,03909023</td>
<td>2,60214473</td>
</tr>
<tr>
<td>2</td>
<td>3,54905374</td>
<td>1,02756192</td>
<td>3,45385876</td>
</tr>
<tr>
<td>3</td>
<td>1,89257567</td>
<td>1,05323294</td>
<td>1,79692032</td>
</tr>
</tbody>
</table>

Postopek:

Delo smo izvajali v posebni DNA komori, katere površine smo pred delom prebrisali z 70 \% etanolom ter obsevali z ultravijolično svetlobo 15 minut. Z 70 \% etanolom smo pred vnosom v komoro razkužili tudi ves material in pripomočke ter zaščitne rokavice. Sonde, oligonukleotidne začetnike in vodo smo odtalili na sobni temperaturi.

1. Kapa Probe Fast Universal qPCR Kit (Kapa BioSystems)

Najprej smo pripravili osnovno zmes za RT-PCR reakcijo. Uporabili smo splošno osnovno zmes, ki je že pripravljena s strani proizvajalca, ter ji dodali specifične sonde in vodo. Pripravili smo osnovne zmesi za hišni gen in tarčne gene. Na
Vzdolbine: Nanesene po 4 µL osnovnih zmesi. Vzorčke smo razredili do koncentracije 10 ng/µL ali 5 ng/µL (kar se je predhodno izkazalo za bolj optimalno) ter jih v triplikatih nanesli v vdolbinice. V vsako vdolbino smo dodali po 2 µl vzorčka. Za tem smo si pripravili standarde za standardno krivuljo. Potrebne količine vzorčkov smo združili ter jih serijsko redčili v razmerju 1:1 (imeli smo 5 koncentracijskih standardov - 20, 10, 5, 2.5 in 1.25 ng/µL oz. 10, 5, 2.5, 1.25 in 0.625 ng/µL). Volumen standardov, ki smo ga pipetirali, je bil prav tako 2 µL.

2. **EvaGreen® qPCR Mix Plus (Solis BioDyne)**

Kljub številnim optimizacijam pri uporabi Kapa Probe Fast Universal qPCR Kit-a nismo mogli določiti standardne krivulje za gen *stmn3*. Zato smo uporabili drug postopek.

Tudi tukaj smo najprej pripravili osnovno zmes za RT-PCR reakcijo, in sicer v koncentraciji 300 nM. Uporabili smo splošno osnovno zmes, ki je že pripravljena s strani proizvajalca, ter ji dodali začetne nukleotide (»forward« in »reverse«) in vodo. Na mikrotitrsko ploščico s 384 vdolbinami smo nanesli po 9 µL osnovne zmesi. Vzorčke smo razredili do koncentracije 5 ng/µL ter jih v triplikatih nanesli v vdolbinice. V vsako vdolbino smo dodali po 6 µl vzorčka. Za tem smo si pripravili standarde za standardno krivuljo. Potrebne količine vzorčkov smo združili ter jih serijsko redčili (imeli smo 4 koncentracijske standarde – 30, 20, 10 in 5 ng/µL). Volumen standardov, ki smo ga pipetirali, je bil prav tako 6 µL.

3.6 STATISTIČNA ANALIZA

Rezultate testov smo podali kot povprečje bioloških ponovitev skupaj s standardnim odklonom. Rezultate vzorčev smo statistično primerjali z rezultati kontrol. Pri tem smo za ovrednotenje statistično signifikantne razlike uporabili Studentov t-test. Za statistično signifikantni smo vzeli vrednosti *p < 0,05 ali **p < 0,01.
4 REZULTATI IN RAZPRAVA

4.1 IZBOR GENOV

Predhodno je bila sintetizirana in ovrednotena skupina zaviralcev serinskih proteaz z N-amidinopiperidinsko strukturo, ki so bili selektivno citotoksični za celice Burkittovega limfoma (Ramos) in so povzročili celično smrt z indukcijo od kaspaz odvisne apoptoze. Mehanizem delovanja poteka preko zaviranja proteasoma, pri čemer je imela spojina 15 najnižjo konstanto zaviranja, zato je bila izbrana za nadaljnje raziskave (38). Izvedeni so bili eksperimenti na mikromrežah.

Analiza eksperimentov na mikromrežah je pokazala značilne razlike v izražanju številnih genov. Ugotovljeno je bilo, da je v celicah Burkittovega limfoma izražanje gena atf3 najbolj povečano, izražanje gena stmn3 najbolj zmanjšano, za gen rge-32 pa velja, da je v celicah Burkittovega limfoma značilno povečano izražen, a je spojina 15 njegovo izražanje močno znižala. Zato smo v prvem delu diplomskih naloge želeli preveriti izražanje teh treh genov z metodo RT-PCR v celicah Ramos in sicer v različnih časovnih točkah po
izpostavljanju spojini 15 ter bortezomibu, ki je znan zaviralec proteasoma, a ni selektivno citotoksičen. V našem eksperimentu smo preverili, kako spojina 15 v primerjavi z bortezomibom modulirana izražanje teh genov. Izražanje genov smo preverili tudi v celicah U937, za katere so predhodno ugotovili, da niso dovzetne za spojino 15.

4.2 IZRAŽANJE IZBRANIH GENOV PO MODULACIJI PROTEASOMSKA AKTIVNOSTI

Celice Ramos ter U937 (v koncentraciji 1x10^6/mL) smo tretirali s spojino 15 (c = 50 μM) ter z bortezomibom (c = 5 ng/mL). Inkubirali smo jih različno dolgo ter jih nato po določenih časovnih točkah lizirali, izolirali mRNA ter določili nivo izražanja genov z metodo RT-PCR. Časovne točke in koncentracije smo izbrali na podlagi testov metabolne aktivnosti ter določanja apoptoze, ki so bili izvedeni v predhodnih študijah (38). Rezultate smo primerjali z izražanjem genov v netretiranih celicah in predstavljajo povprečje štirih (celice Ramos) oz. dveh (celice U937) bioloških ponovitev.

4.2.1 Izražanje gena stmn3 po modulaciji proteasomske aktivnosti

Slika 6: Izražanje gena stmn3 v celicah Ramos po tretiranju s spojino 15 in bortezomibom. Izražanje gena smo določali z metodo RT-PCR in rezultate normalizirali glede na netretirane celice. Koncentracije spojine: c(spojina 15) = 50 μM; c(bortezomib) = 5 ng/mL; K 6h – kontrola 6h; ** p < 0.01
Slika 7: Izražanje gena \textit{stmn3} v celicah U937 po tretiranju s spojino 15 in bortezomibom. Izražanje gena smo določali z metodo RT-PCR in rezultate normalizirali glede na netretirane celice. Koncentracije spojin:
\[c(\text{spojina 15}) = 50 \, \mu M; \quad c(\text{bortezomib}) = 5 \, \text{ng/mL}; \quad K \, 6h \quad \text{kontrola 6h}; \quad ** \quad p < 0.01 \]

4.2.2 Izražanje gena rgc-32 po modulaciji proteasomske aktivnosti

Slika 8: Izražanje gena rgc-32 v celicah Ramos po tretiranju s spojino 15 in bortezomibom. Izražanje gena smo določali z metodo RT-PCR in rezultate normalizirali glede na netretirane celice. Koncentracije spojin: c(spojina 15) = 50 μM; c(bortezomib) = 5 ng/mL; K 6h – kontrola 6h; * p < 0.05; ** p < 0.01

Slika 9: Izražanje gena rgc-32 v celicah U937 po tretiranju s spojino 15 in bortezomibom. Izražanje gena smo določali z metodo RT-PCR in rezultate normalizirali glede na netretirane celice. Koncentracije spojin: c(spojina 15) = 50 μM; c(bortezomib) = 5 ng/mL; K 6h – kontrola 6h; * p < 0.05; ** p < 0.01

4.2.3 Izražanje gena \textit{atf3} po modulaciji proteasomske aktivnosti

\begin{figure}[h]
 \centering
 \includegraphics[width=\textwidth]{slika10.png}
 \caption{Izražanje gena \textit{atf3} v celicah Ramos po tretiranju s spojino 15 in bortezomibom. Izražanje gena smo določali z metodo RT-PCR in rezultate normalizirali glede na netretirane celice. Koncentracije spojin: c(spojina 15) = 50 μM; c(bortezomib) = 5 ng/mL; K 6h – kontrola 6h; * p < 0.05; ** p < 0.01}
\end{figure}
Slika 11: Izražanje gena *atf3* v celicah U937 po tretiranju s spojino 15 in bortezomibom. Izražanje gena smo določali z metodo RT-PCR in rezultate normalizirali glede na netretirane celice. Koncentracije spojin: c(spojina 15) = 50 µM; c(bortezomib) = 5 ng/mL; K 6h – kontrola 6h; * p < 0.05

V prvem delu diplomske naloge smo torej ugotovili, da je le eden izmed izbranih genov tisti, ki potencialno prispeva k selektivni citotoksičnosti spojine 15.
4.3 IZRAŽANJE GENA atf3 OB SOČASNI UPORABI ZAVIRALCEV SIGNALNIH POTI

V drugem delu diplomskih naloge smo se osredotočili na atf3 gen. Zanimalo nas je, katere signalne poti so vpletene v njegovo regulacijo. V ta namen smo izražanje slednjega ugotavljali ob dodatku zaviralcev signalnih poti, in sicer U0126 (zavira del MAP kaskade) ter wortmannina (zavira Akt signalno pot).

Celice Ramos ter U937 (v koncentraciji 1x10^6 /mL) smo tretirali s spojino 15 ali z bortezomibom in sicer v prisotnosti ali odsotnosti zaviralca U0126 ali wortmannina. Izražanje gena atf3 smo merili v časovni točki 6 ur, saj smo v predhodnih eksperimentalnih pokazali, da je takrat njegov nivo izražanja najvišji. V tej časovni točki smo celice lizirali, izolirali mRNA ter določili nivo gena z metodo RT-PCR. Primerjali smo izražanje ob dodatku enega ali drugega zaviralca s celicami, ki so bile tretirane samo s spojino 15 ali bortezomibom. Rezultati predstavljajo povprečje dveh bioloških ponovitev.

Slika 12: Izražanje gena atf3 v celicah Ramos ob prisotnosti zaviralcev signalnih poti. Izražanje gena smo določali z metodo RT-PCR in rezultate normalizirali glede na netretirane celice. Celice smo tretirali 6 ur. Koncentracije spojin: c(spojina 15) = 25 µM ali 50 µM; c(bortezomib) = 5 ng/mL; c(U0126) = 5 µM; c(wortmannin) = 300 nM; * p < 0.05
Prvi trije stolpci na grafu (slika 12) predstavljajo izražanje gena v celicah Ramos samo v mediju z 0,1 % DMSO, ter ob dodatku U0126 (c = 5 μM) oz. wortmannina (c = 300 nM). Kot vidimo, je nivo izražanja približno enak, kar kaže na to, da smo uporabili koncentracije zaviralcev, ki same po sebi ne vplivajo na izražanje *atf3*.

Primerjava izražanja gena v celicah tretiranih s 25 μM spojino 15 in wortmaninom ali U0126 pokaže signifikantni vpliv na nivo *atf3*. Zaviranje MAP kinaznih poti z U0126 vodi v rahlo povišanje, medtem pa prisotnost wortmannina povzroči znižanje izražanja. Slednji učinek izzveni, če uporabimo višje koncentracije spojine 15, saj wortmannin ne more več premočiti močnega delovanja spojine na izražanje gena. To nakazuje, da je Akt signalna pot sicer vpletena v *atf3* regulacijo, vendar najverjetneje ni ključnega pomena. Za natančnejše razumevanje bi bilo potrebno te mehanizme podrobnje raziskati. Pri tretiranju celic v kombinaciji bortezomib in zaviralci, ni opaziti razlik v izražanju.

Slika 13: Izražanje gena *atf3* v celicah U937 ob prisotnosti zaviralcev signalnih poti. Izražanje gena smo določali z metodo RT-PCR in rezultate normalizirali glede na netretirane celice. Celice smo tretirali 6 ur. Koncentracije spojine: c(spojina 15) = 25 μM ali 50 μM; c(bortezomib) = 5 ng/mL; c(U0126) = 5 μM; c(wortmannin) = 300 nM; * p < 0.05
4.4 VRDNOTENJE CITOTOKSIČNOSTI V LIMFOBLASTOIDNIH CELIČNIH LINIJAH (LCL)

Limfoblastoidne celične linije (LCL) izvirajo iz B limfocitov in ohranijo večino njihovih fenotipskih lastnosti. Zanje je značilno, da se EBV genom ne vključi v jedrno DNA, tako da jedrno genomsko zaporedje ostane intaktno, transkriptomi LCL celičnih linij pa vsebujejo velik del humanih genov iz različnih signalnih poti celic. Ker LCL-i ohranijo genomske, transkriptomske in proteomske variacije, odražajo heterogenost, specifično za posameznika in tako predstavljajo preprost, zanesljiv in učinkovit vir za študije v humani genetiki, farmakogenetiki ter v študijah transkriptoma, epigenoma in proteoma. Te linije so se izkazale kot dobre v študijah, kjer so preko izražanja genov iskali nove markerje v reakcijah za občutljivost na učinkovine. Primerjali so transkriptome »krajnih« LCL-ov, t.j. tistih celičnih linij z relativno nizko ali visoko občutljivostjo na potencialne citotoksične učinkovine (40).

V zadnjem delu smo zato želeli ovrednotiti citotoksičnost spojine 15 za te celice. V ta namen smo izbrali 11 LCL linij (LCL 5, LCL 10, LCL 1976, LCL 4, LCL 2, LCL 6432, LCL 1754, LCL 1801, LCL 1564, LCL 1112 ter LCL 1515). Celice smo tretirali s spojino 15 (c = 75 µM) ter z bortezomibom (c = 10 ng/mL), ki smo ga uporabili z namenom, da bi lažje ocenili citotoksičnost spojine 15. Celice smo inkubirali 48 ur, nato pa izvedli test MTS, kot je opisano v protokolu. Rezultate smo podali v odstotkih metabolne aktivnosti glede na kontrolo, ki jo predstavljajo netretirane celice.
Slika 14: Metabolna aktivnost limfoblastoidnih celičnih linij pri tretiranju s spojino 15 in bortezomibom. 11 celičnih linij LCL smo inkubirali s spojino 15 (c = 75 μM) ali bortezomibom (c = 10 ng/mL) 48 ur. S testom MTS smo izmerili celično metabolno aktivnost. Slika prikazuje metabolno aktivnost celic, normaliziranih na metabolno aktivnost kontrolnih (netretiranih) celic.

Na podlagi testa MTS je razvidno, da je bortezomib mnogo bolj citotoksičen za celine LCL kot spojina 15. Slednja ne izkazuje nobenega vpliva na metabolno aktivnost LCL 5, LCL 4 in LCL 1801. Tudi na ostalih celičnih linijah je prisoten le minimumen vpliv na metabolno aktivnost. Zaključimo lahko, da celične linije LCL niso dovzetne za spojino 15. Ker s pomočjo testa MTS nismo uspeli določiti »krajnih« LCL-ov (t.j. tistih z relativno nizko ali visoko občutljivostjo na spojino 15), LCL linij nismo mogli uporabiti kot model za nadaljnje vrednotenje izražanja izbranih genov.
5 SKLEP

Burkittov limfom spada med najbolj agresivne B-celične limfome. Ker se za zdravljenje uporablja kombinacija zelo agresivnih citostatikov, so neženi učinki pogosti. V želji po iskanju novih terapevtskih pristopov, ki bi bolj selektivno vplivali na molekularne spremembe Burkittovega limfoma, je bila sintetizirana in ovrednotena skupina zaviralcev serinskih proteaz kot induktorjev apoptoze. Pri tem je bilo ugotovljeno, da so spojine z N-amidinopiperidinskim skeletalom selektivno toksične za celice Burkittovega limfoma, njihov mehanizem delovanja pa poteka preko zaviranja proteasoma. S spojino, ki je imela najnižjo konstanto zaviranja, je bila izvedena analiza na mikromrežah, ki je pokazala razlike v izražanju številnih genov.

Da bi ovrednotili rezultate, dobljene na mikromrežah, smo v prvem delu diplomski naloge preverili izražanje treh genov, katerih izražanje je najbolj izstopalo, z metodo RT-PCR. Ugotovili smo, da so signifikantne razlike v izražanju genov ob tretiranju celic Burkittovega limfoma ter celic U937 (za katere se je predhodno izkazalo, da izbrana spojina zanje ni toksična) s spojino 15 ter neselektivnim zaviralcem proteasoma bortezomibom, prisotne le pri genu atf3. Zato smo v drugem delu diplomski naloge poskušali ugotoviti, katere signalne poti so vpleteni v regulacijo gena, ki ima vlogo v selektivni citotoksičnosti te spojine. Z uporabo zaviralcev signalnih poti smo ugotovili, da je izražanje gena atf3 v celicah Burkittovega limfoma zmanjšano v primeru uporabe wortmannina, kar nakazuje potencialno vpletene poti Akt signalne poti v regulacijo tega gena.

Da bi to nedvomno potrdili, bi bilo potrebno opraviti še druge preizkuse, lahko bi na primer preverili, kateri transkripcijski faktorji se vežejo na promotorsko regijo atf3 gena in z uporabo zaviralca signalnih poti nato preverjali, ali pride do zaviranja katerega od transkripcijskih faktorjev.

Želeli smo tudi preveriti izražanje gena atf3 v celicah limfoblastoidnih celičnih linij, ki so dober model za iskanje molekul, ki povzročajo različno občutljivost na učinkovine. V ta namen smo opravili test MTS, s pomočjo katerega pa smo ugotovili, da nobena izmed 11-ih uporabljenih LCL celičnih linij ni bila dovzeta za delovanje spojine 15, zato tudi nismo mogli iskati korelacije med izražanjem atf3 in občutljivostjo na spojino in nadalje nismo vrednotili izražanja atf3 gena v LCL-ih.
6 LITERATURA

