UNIVERZA V LJUBLJANI FAKULTETA ZA FARMACIJO

BLAŽ FERJANC

DIPLOMSKA NALOGA

UNIVERZITETNI ŠTUDIJ FARMACIJE

UNIVERZA V LJUBLJANI FAKULTETA ZA FARMACIJO

BLAŽ FERJANC

DOLOČITEV CELOTNEGA NUKLEOTIDNEGA ZAPOREDJA GENA DOMNEVNE GLIKOZILTRANSFERAZE IZ JABLANE (MALUS X DOMESTICA) IN POSKUS IZRAŽANJA KODIRANEGA PROTEINA V EKSPRESIJSKEM SISTEMU E. COLI

GENE SEQUENCING OF PUTATIVE GLYCOSYLTRANSFERASE FROM APPLE (MALUS X DOMESTICA) AND AN ATTEMPT OF HETEROLOGOUS EXPRESSION IN E. COLI

The research work was carried out at Department of Pharmaceutical Biology, Faculty

of Pharmacy, Technische Universität Braunschweig, Germany under the supervision

of my co-mentor dr. Leif Barleben and home mentorship of assist. prof. Tomaž

Bratkovič. The sequential analyses were performed by Eurofins Operon MWG,

Ebersberg, Germany.

Acknowledgments

I would like to thank dr. Leif Barleben for the opportunity to make my research work

in Germany, while I would also like to thank for the help with my research to Malte

Büttner, Frauke Gumz, Mariam Gaid and in fact the whole Department of

Pharmaceutical Biology for their friendliness, helpfulness and good spirit, which

made my months of work very pleasant and enjoyable. I am also extremely grateful to

my mentor doc. dr. Tomaž Bratkovič for the help with the writing of my thesis and

completion in the desired timeframe. Last, I would like to thank my family, Mateja

Lumpert, my friends and collegues for their support in my studies.

Statement

I declare that I have carried out my diploma work independently under the mentorship

of assist. prof. Tomaž Bratkovič and co-mentorship of dr. Leif Barleben.

Ljubljana, 2012

Graduation commission president: assoc. prof. dr. Marija Bogataj

Graduation commission member: assist. dr. Stane Pajk

Ι

Table of contents STATEMENT TABLE OF CONTENTS.....II LIST OF TABLESVII POVZETEK VIII ABSTRACT IX I. INTRODUCTION......1 1.3.1 APPLICATION POSSIBILITIES OF PLANT GLYCOSYLTRANSFERASES............3 1.5 APPLE AND FIRE BLIGHT4 1.7.1 THERMOSTABLE DNA POLYMERASE6 II. RESEARCH OBJECTIVE......8 III. MATERIALS AND METHODS9 3.1 MATERIALS......9 3.1.1 BIOLOGICAL MATERIAL9 3.1.1.1 Plant material 9 3.1.1.2 Bacterial strains: 9

3.1.5.3 Buffers and solutions for immobilized metal affinity chromatography (IMAC)14 3.1.5.3.3 Imidazole buffers 14 3.1.5.4 Buffer and solutions for SDS PAGE ________14 3.1.6 OTHER SOLUTIONS AND REAGENTS......16

3.2 METHODS	17
3.2.1 INDUCTION AND HARVESTING OF PLANT SUSPENSION CULTURE	17
3.2.2 RAPID AMPLIFICATION OF cDNA ENDS (RACE)	17
3.2.2.1 RNA extraction	18
3.2.2.2 Reverse Transcription	19
3.2.2.2.1 SuperScript III First-Strand Synthesis System	19
3.2.2.2.2 RevertAid H Minus First Strand cDNA Synthesis Kit	
3.2.2.3 PCR amplification	
3.2.2.3.2 Dream Tag	
3.2.3 AGAROSE ELECTROPHORESIS	
3.2.4 DNA FRAGMENT EXTRACTION	
3.2.5 LIGATION OF INSERT INTO A PLASMID VECTOR	
3.2.5.1 Plasmid vector pGEM-T Easy	
3.2.5.2 Plasmid vector pET-52(+)	24
3.2.6 TRANSFORMATION OF E. COLI WITH PLASMID DNA	
3.2.6.1 Standard transformation protocol	25
3.2.6.2 Blue-white screening	
3.2.7 PLASMID ISOLATION	
3.2.7.1 Plasmid Miniprep Kit for plasmid DNA isolation	
3.2.7.2 Manual Alkaline Plasmid Isolation (a protocol from Susanne Kühle, AG Beerhues) 3.2.8 RESTRICTION DIGESTION OF DNA	
3.2.8.1 <i>Eco</i> RI digestion procedure	
3.2.8.2 DoubleDigest procedure with <i>Kpn</i> I and <i>Sal</i> I	27
3.2.8.2.1 Insert sequence digestion	
3.2.8.2.2 Plasmid pET-52(+) Digestion	28
3.2.8.2.3 Test digestion of isolated plasmid DNA	
3.2.9 HETEROLOGOUS EXPRESSION OF TARGET GENE IN E. COLI	
3.2.9.1 Expression of the target enzyme	29
3.2.9.2 Protein isolation and purification of 6xHis-tagged target protein with immobilized metal chromatography	affinity
3.2.9.2.1 Preparation of a cell extract	
3.2.9.2.2 IMAC	
3.2.10 SDS PAGE	32
3.2.10.1 Sample preparation	32
3.2.10.2 SDS PAGE	
3.2.10.3 Coomassie staining	
3.3 RESEARCH WORK SCHEMES	
3.3.1 RACE OF GOLDEN DELICIOUS	
3.3.2 RACE OF COX'S ORANGE PIPPIN	
3.3.3 CONSTRUCTION OF THE EXPRESSION VECTOR	
3.3.4 HETEROLOGOUS EXPRESSION IN E. COLI	3 <i>t</i>
IV. RESULTS	37
4.1 RACE OF GOLDEN DELICIOUS TEMPLATE	
4.2 RACE OF COX'S ORANGE PIPPIN TEMPLATE	
4.3 CONSTRUCTION OF EXPRESSION VECTOR	
4.4 HETEROLOGOUS EXPRESSION OF PUTATIVE GLYCOSYL TRANSFERASE	
4.4.1 SDS PAGE of Rosetta (DE3) and Origami (DE3)	
4.4.2 SDS PAGE OF Arctic Express (DE3) and Tuner (DE3)	32
V. DISCUSSION	54
5.1 RACE GOLDEN DELICIOUS.	54
5.2 RACE COX'S ORANGE PIPPIN	55
5.3 CONSTRUCTION OF A VECTOR WITH THE COMPLETE TARGET GENE SEQUENCE	
5.4 UNIPROT BLAST	
5.5 PROTEIN EXPRESSION AND ISOLATION	
VI. CONCLUSION	62
VII REFERENCES.	63

List of abbreviations

AEG agarose electrophoresis gel

APS ammonium persulphate

BLAST Basic Local Alignment Search Tool

BME beta-mercapto ethanol cDNA complementary DNA CFU colony forming unit

Da Dalton, unit of atomic mass

dbEST database of expressed sequence tag
dNTP deoxyribonucleotide triphosphate

DMSO dimethyl sulfoxide

dsDNA double stranded DNA

DTT dithiothreitol

EBI European Bioinformatics Institute
EDTA ethylenediaminetetraacetic acid
ENA European Nucleotide Archive

FT flow-through fraction obtain in IMAC

GT glycosyltransferase

IF insoluble cell protein fraction

IMAC Immobilized Metal Affinity Chromatography

IPTG isopropyl-beta-D-thiogalactopyranoside

LS medium Linsmaier-Skoog growth medium for plants

NCBI National Center for Biotechnology Information

OD optical density

PAGE polyacrylamide gel electrophoresis
RACE rapid amplification of cDNA ends

RLT buffer for lysis of cells and tissues before RNA isolation in kits

RT reverse transcriptase

RW1 membrane-bound RNA wash buffer in kits

SDS Sodium Dodecyl Sulphate
SF Soluble cell protein fraction

SOC medium modified super optimal broth

TBE buffer Tris base, Boric acid, EDTA buffer

TEMED N, N, N', N'-tetramethylethylenediamine

Tris tris(hydroxymethyl)aminomethane

UDP uridine diphosphate

X-gal 5-bromo-4-chloro-indolyl- β -D-galactopyranoside

List of figures

FIGURE 1: THE GENE SEQUENCE FRAGMENT OBTAINED ONLINE FROM NCBI DATABASE DBEST FIGURE 2: NESTED 3'-RACE SCHEME	
FIGURE 2: NESTED 3 -RACE SCHEME	
FIGURE 4: AGAROSE GEL ELECTROPHORESIS OF PCR PRODUCTS AMPLIFIED WITH DREAM TAQ POLYMERASE	39
FIGURE 5: AGAROSE GEL ELECTROPHORESIS OF SAMPLES OF MANUALLY ISOLATED PLASMID DNA (PGEM-T EASY/INSERT) DIGESTED WITH ECORI	
FIGURE 6: GENE SEQUENCE OF PUTATIVE GLYCOSYLTRANSFERASE IN AN APPLE (MALUS X DOMESTICA WITH ADDITIONALLY ACQUIRED GENE SEQUENCE	1)
FIGURE 7: AGAROSE GEL ELECTROPHORESIS OF PCR PRODUCTS AMPLIFIED WITH DREAM <i>TAQ</i> POLYMERASE	
FIGURE 8: AGAROSE GEL ELECTROPHORESIS OF PCR PRODUCTS AMPLIFIED WITH DREAM <i>TAQ</i> POLYMERASE	
FIGURE 9: AGAROSE GEL ELECTROPHORESIS OF PCR PRODUCTS AMPLIFIED WITH DREAM TAQ POLYMERASE	
FIGURE 10: AGAROSE GEL ELECTROPHORESIS OF PLASMIDS PGEM-T EASY/2-COX AND PGEM-T EASY/6DCOX DIGESTED WITH <i>ECO</i> RI	
FIGURE 11: COMPLETE DNA SEQUENCE OF TARGET PUTATIVE GLYCOSYLTRANSFERASE OBTAINED IN RACE	1
FIGURE 12: AGAROSE GEL ELECTROPHORESIS OF PCR PRODUCT AMPLIFIED WITH DREAM <i>TAQ</i> POLYMERASE	47
FIGURE 13: AGAROSE GEL ELECTROPHORESIS OF INSERTEXP AND PLASMIDEXP RESTRICTED WITH SA AND KPNI	
FIGURE 14: AGAROSE GEL ELECTROPHORESIS OF THE SECOND PLASMID DIGESTION OF THE PET-52(+) FIGURE 15: AGAROSE GEL ELECTROPHORESIS OF PLASMIDS PET-52(+)/INSERTEXP DIGESTED WITH K AND $SALI$	PNI
FIGURE 16: COMPLETE PREDICTED DNA SEQUENCE OF TARGET INSERT SEQUENCE IN THE EXPRESSION VECTOR PET-52(+)/INSERTEXP	N
FIGURE 17: SDS PAGE OF INSOLUBLE AND SOLUBLE LYSATE FRACTIONS, AND FLOW-THROUGH FROM IMAC FOR THE RECOMBINANT PROTEIN EXPRESSED IN ROSETTA (DE3) AND ORIGAMI (DE3) EXPRESSION STRAINS	M
FIGURE 18: SDS PAGE OF WASH AND ELUTION FRACTIONS FROM IMAC FOR THE RECOMBINANT PROTEIN EXPRESSED IN ROSETTA (DE3) EXPRESSION STRAIN	
FIGURE 19: SDS PAGE OF WASH AND ELUTION FRACTIONS FROM IMAC FOR THE RECOMBINANT PROTEIN EXPRESSED IN ORIGAMI (DE3) EXPRESSION STRAIN	51
FIGURE 20: SDS PAGE OF INSOLUBLE AND SOLUBLE FRACTIONS, AND FLOW-THROUGH FROM IMAC FOR THE RECOMBINANT PROTEIN EXPRESSED IN ARCTIC EXPRESS (DE3) AND TUNER (DE3) EXPRESSION STRAIN	
FIGURE 21: SDS PAGE OF WASH AND ELUTION FRACTIONS FROM IMAC FOR THE RECOMBINANT PROTEIN EXPRESSED IN ARCTIC EXPRESS (DE3) EXPRESSION STRAIN	
FIGURE 22: SDS PAGE OF WASH AND ELUTION FRACTIONS FROM IMAC FOR THE RECOMBINANT PROTEIN EXPRESSED IN TUNER (DE3) EXPRESSION STRAIN	
FIGURE 23: APPLE PROFILIN SEQUENCE	
FIGURE 24: PREDICTED AMINO ACID SEQUENCE OF THE PUTATIVE GLYCOSYLTRANSFERASE ON THE BASIS OF THE NUCLEOTIDE SEQUENCE OF THE CLONED GENE FROM COX'S ORANGE PIPPIN 3'RA	
FIGURE 25: ALIGNMENT OF RACE SEQUENCE AND INSERT SEQUENCE OF THE EXPRESSION VECTOR PE	ET-
52(+)/INSERTEXP USING CLUSTAL OMEGA FIGURE 26: PREDICTED AMINO ACID SEQUENCE OF THE TARGET GLYCOSYLTRANSFERASE ON THE BAS	SIS
OF THE SEQUENCE OBTAINED FROM SEQUENCING PET-52(+)/INSERTEXP	

List of tables

TABLE 1: OD ₆₀₀ AND TIME OF INDUCTION	29
TABLE 2: THE COLLECTED FRACTIONS IN ELUTION OF Ni ²⁺ AFFINITY COLUMN	

Povzetek

Glikoziltransferaze so encimi, ki katalizirajo prenos sladkorne enote med donorjem, ki je ponavadi z nukleotid difosfatom aktiviran sladkor, in drugo akceptorsko molekulo, med katere spadajo različni sladkorji, lipidi, nukleinske kisline, poliketidi in neribosomalni peptidi, kar se odraža v visoki raznolikosti končnih produktov. Reakcija glikozilacije je vpletena v procese rasti, prenosa signalov, celične adhezije, alelopatskih obrambnih odzivov ter v odpornost pred vročino, nukleazami ter izsušitvijo.

Glikoziltransferaze so še posebno pomembne v rastlinah, kjer pretvarjajo končne produkte fotosinteze v disaharide, oligosaharide in polisaharide ter sintetizirajo druge pomembne molekule, kot npr. polisaharide v celični steni, glikoproteine ter različne manjše glikozilirane produkte, kot so glukozinolatni in cianogeni glikozidi. Ti encimi so potencialni kandidati za gensko manipulacijo in ponujajo mnogo možnosti za izboljšavo hrane in poljščin v prihodnosti.

Cilj diplomskega dela je bil določiti celotno nukleotidno zaporedje gena domnevne glikoziltransferaze v jablani (*Malus x domestica*) z že znanim 5'-koncem in poskus izražanja tarčnega encima v različnih bakterijskih sevih *E. coli*, da bi ugotovili najustreznejši ekspresijski sistem za tarčni protein.

5' konec tarčnega gena smo pridobili na medmrežju v NCBI-jevi bazi podatkov dbEST (database of expressed sequence tag), 3' konec tarčnega gena pa z sekvenciranjen amplikona pridobljenega z metodo hitrega kloniranja koncev cDNA (RACE, ang. *rapid amplification of cDNA ends*). Za matrico smo uporabili celokupno RNA, izolirano iz suspenzijske celične kulture jabolčnih sort "zlati delišes" in "Cox's Orange Pippin", ki smo jo prepisali v komplementarno DNA. Suspenzijsko celično kulturo Cox's Orange Pippin smo inducirali z inaktivirano bakterijsko kulturo hruševega ožiga (*Erwinia amylovora*). Celotno nukleotidno zaporedje smo pomnožili v verižni rekciji s polimerazo in nato vstavili v plazmid. S tako pridobljenim ekspresijskim vektorjem smo transformirali različne ekspresijske seve *E. coli* (Rosetta (DE3), Origami (DE3), Arctic Express (DE3), Tuner (DE3)). Za izolacijo proteina smo uporabili metodo kovinsko-kelatne afinitetne kromatografije.

Za določitev celotnega nukleotidnega zaporedja je bilo potrebno induciranje jabolčne celične kulture z jabolčnim patogenom hruševega ožiga, kar podpira domnevo o vpletenosti encima v obrambni odgovor jablane. Nukleotidno zaporedje tarčnega gena smo primerjali z nukleotidnimi zaporedji proteine-kodirajočih genov v podatkovni bazi UniProt, kjer se je pokazala visoka podobnost proteina z encimom poligalakturonat 4-alfa-galakturonoziltransferazo. Izolacija in čiščenje proteina z metodo kovinsko-kelatne afinitetne kromatografije ni dala zadovoljivih rezultatov, kar pojasnjujemo z vključitvijo stop kodona v zaporedje protismernega začetnega oligonukleotida, ki je bil uporabljen v postopku izdelave ekspresijskega vektorja, in tako je onemogočil prevajanje polihistidinske oznake.

Za zaključek lahko povemo, da so poskusi nakazali, da v jablani obstaja do sedaj neznana glikoziltransferaza vpletena v obrambni odgovor jablane ter da je ta encim najverjetneje poligalakturonat 4-alfa-galakturonoziltransferaza.

Abstract

Glycosyltransferases are enzymes, which catalyze the transfer of a sugar moiety from a donor, usually being nucleotide diphosphate activated sugar, to another recipient molecule, which vary from sugars, lipids, proteins, nucleic acids, polyketides, and non-ribosomally synthesized peptides, to produce highly diverse structures. The reaction of glycosylation is involved in development, signal transduction, cell adhesion, alelopathic defense response, and resistance from heat shock, nucleases, and desiccation.

Glycosyltransferases are especially important in plants, converting products of photosynthesis into disaccharides, oligosaccharides, and polysaccharides and synthesizing other important molecules like cell-wall polysaccharides, glycoproteins and various small glycosylated molecules such as glucosinolates and cyanogenic glycosides. These enzymes represent suitable candidates for gene manipulation and offer many possibilities for food and crop improvement in the future.

The objective of this research was to determine the complete gene sequence of the putative glycosyltransferase in the apple (*Malus x domestica*) with the 5' end of the target gene already known and attempt to express the target enzyme in various *E. coli* strains to identify the optimal expression strain.

The 5' end of the target gene was obtained online from NCBI database dbEST, while the 3' end was determined by sequencing the amplicon obtained with the method of rapid amplification of complementary DNA ends. As template the total RNA extracted from Golden Delicious suspension culture and Cox's Orange Pippin suspension culture was used, while the Cox's Orange Pippin culture was induced with inactivated bacterial culture of *Erwinia amylovora*. The complete gene sequence was amplified, integrated into plasmid to produce an expression vector, and introduced into various bacterial expression strains of *E. coli* (Rosetta DE3, Origami DE3, Arctic Express (DE3), Tuner (DE3)). Immobilized metal affinity chromatography was used to isolate the encoded protein.

In order to obtain this sequence, the apple cell culture needed the induction with *Erwinia amylovora* bacterium, thus supporting the theory of the enzyme involvement in apple's defense response. The complete gene sequence was blasted in the UniProt databank, which showed that the protein is most likely to be a polygalacturonate 4-alpha-galacturonosyltransferase. The protein purification using immobilized metal affinity chromatography did not produce the desired results with the recombinant product not present in elution fractions. In retrospective, a stop codon was included into a sequence of the reverse primer used in construction of the expression vector, which prevented the translation of polyhistidine tag.

To conclude, the DNA sequence obtained in the experiments suggested that there is a yet unidentified glycosyltransferase in the apple involved in apple's defense response, while the enzyme is most likely to be polygalacturonate 4-alphagalacturonosyltransferase.

I. INTRODUCTION

1.1 Function of glycosyltransferases

Glycosyltransferases are enzymes that catalyze the transfer of sugars to other molecules and perform critical functions in all living organisms. They allow storage of energy in the form of glycogen, synthesize the carbohydrate polymers that maintain and support bacterial, fungal, and plant cell walls. These enzymes also produce the cell surface oligosaccharides, which are involved in cell-cell recognition and act as receptors for hormones, bacterial toxins, viruses, and a multitude of circulating proteins (1). The reaction of glycosylation is required in development, in signal transduction, in cell adhesion, while it enhances alelopathic defense response and offers resistance from heat shock, nucleases, and desiccation (2).

In prokaryotes it was found that glycosyltransferases are involved in regulation of the activity of various secondary metabolites, including vancomycin, erythromycin, and daunomycin, while in eukaryotes, they regulate the transcription of numerous genes, for example gene participating in glucose metabolism. The variety of reactions involving glycosyltransferases produce highly diverse structures, with glycosyltransferases attaching sugars to other sugars, to lipids, proteins, nucleic acids, polyketides, and non-ribosomally synthesized peptides (1).

1.2 Classification of glycosyltransferases

The standard nomenclature and classification is based on the reactions catalyzed by the enzymes. While this principle is used with the majority of enzymes types, it is not sufficient to categorize glycosyltransferases (GTs) into a reasonable number of families, because the substrate specificity can change rapidly with a single point mutation, a conformational shift induced by a regulatory factor, or utilization of alternative acceptors, without altering the stereochemical mechanism of the transfer or form of the fold (2).

The most prominent classification is based on fold types of catalytic domains. Here, the majority of glycosyltransferases belong to two different super families named GT-A and GT-B superfamilies. Another two fold types were predicted named GT-C and GT-D superfamily, however no examples have been found, while a few enzymes do not show any resemblance to these fold types and are so far unclassified (2).

Another classification is used to describe the characteristic of glycolsyltransferase transfer mechanism. Glycosyltransferases, which retain the stereochemistry of the donor's anomeric bond $(\alpha \rightarrow \alpha)$, are named "retaining" enzymes. Similarly, if donor's anomeric bond is inverted $(\alpha \rightarrow \beta)$, the enzyme is referred as "inverting". Examples of retaining and inverting enzymes have been observed in both the GT-A and GT-B type folds, meaning that the fold type of catalytic domains does not determine the stereospecifity of the reaction (2).

1.3 Glycosyltransferases in plants

These enzymes, while found in most living organisms, are especially important in plants, where they convert the products of photosynthesis into disaccharides, oligosaccharides and polysaccharides and produce many important molecules including cell-wall polysaccharides, glycoproteins and many other different types of small glycosylated molecules (3).

The glycosyltransferases of plant secondary metabolism transfer nucleotide diphosphate-activated sugars to low molecular weight substrates, often as the last step of the product synthesis. The activated sugars used in the transfer are usually UDP-glucose with UDP-galactose and UDP-rhamnose as possible alternatives (4).

One of the roles of plant glycosyltransferases was found to be in plant's defensive response. For example, glucosinolates and cyanogenic glycosides are produced in plants secondary metabolism, where the attachment of glucose stops spontaneous degradation to cyanide, aldehydes or isothiocyanates, which are aggressive chemicals. These glycosides can be safely stored and used in defense response towards a putative pathogen or herbivore in case of tissue damage (i.e., decompartmentalization and exposure to glycosidases, which liberate toxic products) (4).

1.3.1 APPLICATION POSSIBILITIES OF PLANT GLYCOSYLTRANSFERASES

Glycosyltransferase application holds great promise for improvement of food and crop quality. There appears to be a vast array of suitable candidate glycosyltransferases to be manipulated with or inserted into a variety of plants. For example, transforming yeast with a glycoalkaloid GT has been shown to improve detoxification characteristics and consequently reducing the toxicity of solanidine and related alkaloids. Another possibility lies in overexpressing specific GTs in plants to glycosylate herbicides or herbicide metabolites, which should increase the detoxifying capacity of these plants in a concept called "green liver" (4).

1.4 Plant defense

Plant defense response consists of a variety of preexisting or induced mechanisms. These defenses can also be categorized into structural or chemical. These types of resistances are present in all plants and its levels vary depending on the attacking pathogen. This resistance, which consists of preexisting or induced mechanisms, is controlled by a multitude of genes and is known as polygenic resistance as well as quantitative, partial, horizontal, multigenic, field, durable, or minor gene resistance, Plants posses also another type of defense response, which is controlled by one or a few genes called race-specific, R-gene, major gene or vertical resistance. Here, plants with specific R-genes trigger defense response towards a particular pathogen possessing a matching avirulence gene or genes. This defense response can kill the pathogen and halt the infection, while often the hypersensitive response is triggered resulting in the demise of cells surrounding the attacked cell (5).

Rapid recognition of a pathogen is an essential criterion in an efficient defense response, which is achieved through the recognition of specific pathogen- or plant cell wall-derived signal molecules during the infection process. These molecules are called elicitors with majority of them being low-molecular-weight compounds synthesized or released from polymeric precursors and can be categorized according to its origin into exogenous or endogenous (6).

1.5 Apple and fire blight

Erwinia amylovora is a Gram-negative bacterium capable of inducing fire blight belonging to the family of Enterobacteriaceae (7). Fire blight has been suspected to evolve in North America on native plants in the family Rosaceae, while in later periods has adapted to infect a wide host range of species in all subfamilies of Rosaceae. Among commercially important fruits, which can be infected by fire blight, are apple, pear, quince, cotoneaster and loquat. Fire blight possesses a highly invasive potential, spreading rapidly and when established in one orchard, it has the potential to infect all of the nearby orchards. Today, the disease is prevalent throughout the North and Central America, while it has already spread into New Zealand, British Isles, continental Europe and the Middle East primarily through human activity via long-distance shipments of either budwood or trees (8).

1.6 Characterization of glycosyltransferases

In the not so distant past, individual GTs were characterized by purifying the enzyme and then determining the substrate specificity and kinetics. However, low expression of GTs, their high diversity and lability renders this approach very difficult. Therefore, the identification of GTs by bioinformatic methodology (i.e., sequence similarity searches) and the efforts to define enzyme structure with its domains as well as to predict substrate specificity should represent a valuable alternative. However, when attempting to predict GT specificity, sequence data should only be considered informative (4). The problem lies in an enormous variety of glycosyltransferase products, which makes reliable prediction of function for thousands of sequences extremely hard with only a small number of enzyme structures determined. Nevertheless, a higher number of structures and characterizations of glycosyltransferases determined in the near future will likely improve this method to make more accurate predictions of function of other genes encoding glycosyltransferases (9). Until then, the only reliable method of characterization of GTs is through experiments performed with purified (especially recombinant) enzymes and suspected substrates.

1.7 Polymerase chain reaction

The polymerase chain reaction (PCR) is a primer-mediated enzymatic amplification of DNA sequences using a thermostable DNA polymerase. The reaction requires template DNA containing the target nucleotide sequence, excess amount of an oligonucleotide primer pair and all four types of deoxynucleoside triphosphates (dNTPs). In a buffered solution DNA polymerase produces millions of copies of the target DNA sequence (10).

The typical PCR program is comprised of the initial 5 minutes long denaturation step at 94-98 °C, continued with identical 30 cycles, where each cycle consist of 30 seconds long denaturation step at 94 °C, 30 seconds long annealing step at 55 °C or higher, and 90 seconds long extension step at 72 °C. Afterwards one additional 5 minutes long extension step at 72 °C is performed to ensure that the polymerase has completed its work. The reaction tube is then cooled to 4 °C to stop the reaction, until the tube is removed from the thermocycler (11).

Denaturation begins at a temperature of 70 °C, where the disruption of the Watson-Cricks bonds between the two DNA strands by the heat causes the separation of the strands from one another. This process takes place very quickly with the time of 5 seconds enough to separate the DNA strands. This step should be as short as possible, because all of the components are susceptible to heat (11).

Annealing comes after the denaturation step. Lower temperature is required so that hybridization of the oligonucleotide primer with the single-stranded DNA template can occur. The temperature is usually adjusted to the melting temperatures of the used primers (11).

The extension is carried out at the temperature of 72°C, which is the optimal temperature for *Taq* polymerase. The primer is elongated until a double-stranded DNA is formed equivalent to the original DNA template, while the time of this step should be adjusted according to the length of the expected amplicon (11).

In theory the amount of DNA template should be doubled in the course of one cycle, however the average multiplication rate per cycle is estimated to be about 1.6-1.7 with variations in both directions. The rate is supposed to be smaller at the beginning, because of the lower probability of the template, primer, and enzyme meeting one another. This probability is increased with the increased template concentration and decreased at the end of the reaction because of the inhibition of amplification through the increase in by-products (pyrophosphate, crumbling nucleotides) and rehybridizing products (11).

A buffer must accommodate the fact, that the activity of *Taq* polymerase is maximal at a pH above 8 with Tris·HCl as the usual choice. The use of KCl or (NH₄)₂SO₄ can improve the yield of the reaction, while NaCl inhibits the amplification. The enzyme necessitates free Mg²⁺ ions for its polymerase activity, while these cations also affect primer annealing, DNA denaturation, the product specificity, formation of primer dimers, and the rate of errors. Commercial DNA polymerases come with ready-to-use prepared buffers for amplification, which normally incorporate these substances (11).

1.7.1 THERMOSTABLE DNA POLYMERASE

The standard polymerase used for PCR is the *Taq* DNA polymerase isolated from *Thermus aquaticus*, a bacterial strain which is thermostabile and can thrive in hot springs at a temperature of 70°C. This variety of enzymes has 5'-3' DNA polymerase activity with maximum activity at 74°C and pH above 8, while it also possesses a 5'-3' exonuclease activity. *Taq* DNA polymerase has a template-independent activity, which is responsible for the fact that an additional base is frequently attached to the end of the newly synthesized strand (usually adenosine) (11).

Another group of DNA polymerases used in PCR derives from *Pyrococcus furiosus* (*Pfu*), from *Pyrococcus woesei* (*Pwo*), from *Thermotoga maritima* (*Tma* or *UITma*), and from *Thermococcus litoralis* (*Tli* or *Vent*). These polymerases demonstrate a higher temperature stability than that of *Taq* along with 3'-5' exonuclease activity, which makes proofreading possible. Their amplification products have no base overhang like the *Taq*-generated products, and the enzymes produce blunt ends instead (11).

Last group of DNA polymerases is obtained from *Thermus thermophilus* (*Tth*) and from *Thermus flavus* (*Tfl*). The characteristics of these DNA polymerases are very similar to that of the *Taq* polymerase with the difference that these polymerases also demonstrate relatively high reverse transcriptase activity. These enzymes can therefore be used for cDNA synthesis as well as PCR (11).

1.8 Molecular cloning

The target gene sequence obtained in PCR amplifications is inserted into a vector and can be transformed into host cells with *E. coli* bacterium usually used, where the vector and also the target gene are multiplied. When the host cell divides, the inserted gene is copied and passed along to the next generation. After a large number of cell divisions on solid growth medium a colony is produced, which is comprised of identical cells containing vector carrying the target gene. At this point the target gene is cloned and can be sequenced or expressed to produce the target protein (12).

II. RESEARCH OBJECTIVE

In this research we will focus on the putative glycosyltransferase in the apple (*Malus x domestica*). The starting point is an apple cDNA fragment found online from NCBI database dbEST containing a 5' part of gene sequence highly similar to a sequence of putative glycosyltransferase found in *Arabidopsis thaliana* (13). This sequence will be used to design specific primers for use in 3' rapid amplification of cDNA ends.

Figure 1: The gene sequence fragment obtained online from NCBI database dbEST (13).

cDNA will be obtained in reverse transcription of total RNA extracted from apple callus suspension culture of Golden Delicious and Cox's Orange Pippin. The putative glycosyltransferase is suspected to be involved in apple's defense response mechanism, therefore induction with *Erwinia amylovora* will be performed in an attempt to intensify the target gene expression, which should help to obtain the gene sequence of the target protein. This DNA will be used as a template in PCR amplification of the target gene. The target amplicon will be inserted into pGEM T-Easy plasmid and cloned in XL1 *E. coli* bacterial strain. The isolated plasmid DNA will be sequenced, while the sequence will be used to the design the primers for obtaining the DNA fragment containing the complete gene sequence of the target protein. This sequence will be inserted into pET-52(+) plasmid to produce an expression vector, which will be transformed into various *E. coli* expression strains (Rosetta (DE3), Origami (DE3), Tuner (DE3), Arctic Express (DE3)). The target protein will be isolated and purified using immobilized metal affinity chromatography.

III. MATERIALS AND METHODS

If not described otherwise, the products used in the research were set up according to Molecular Cloning: Laboratory manual (Third edition, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, 2000) (14).

3.1 Materials

3.1.1 BIOLOGICAL MATERIAL

3.1.1.1 Plant material

Suspension cell culture of *Malus x domestica* cultivars Golden Delicious and Cox's Orange Pippin was already established at the department of Pharmaceutical Biology at TU Braunschweig, Germany. The culture was grown in LS medium in the rotary shaker (170 rpm) at 25°C in the dark. Approximately every 10 days a subdivision was made to maintain the cell line, where the culture was vacuum filtered with the help of Buchner funnel and distributed in two 250 ml flasks filled with fresh 50 ml of LS-medium. This procedure was made in a laminar airflow chamber with sterile equipment to preserve its microbiological quality.

3.1.1.2 Bacterial strains:

E. coli	Purpose
XL1 Blue	Insert multiplication
Rosetta (DE3)	Gene expression
Origami (DE3)	Gene expression
Arctic Express (DE3)	Gene expression
Tuner (DE3)	Gene expression

3.1.1.2.1 XL1 Blue

The XL1 Blue strain allows blue-white color screening for recombinant plasmids and is a host strain for routine cloning applications using plasmid or lambda vectors. The XL1 Blue cells are endonuclease deficient, which improves the quality of plasmid isolation (15).

3.1.1.2.2 Rosetta (DE3)

Rosetta host strain is a BL21 derivative designed to enhance the expression of eukaryotic proteins that contain codons rarely used in *E. coli*. The original Rosetta

strains supply tRNAs for the codons AUA, AGG, AGA, CUA, CCC, and GGA on a compatible chloramphenicol-resistant plasmid, pRARE. By supplying rare codons, the Rosetta strains provide for "universal" translation, where translation would otherwise be limited by the codon usage of *E. coli* (16).

3.1.1.2.3 Origami (DE3)

Origami host strains are K-12 derivatives that have mutations in both the thioredoxin reductase and glutathione reductase genes, which enhance disulfide bond formation in the cytoplasm. Studies have shown that expression in Origami DE3 yielded 10-fold more active protein than in some other *E. coli* host strains even though overall expression levels were similar (16).

3.1.1.2.4 Arctic Express (DE3)

Arctic Express cells have been engineered for improved protein processing at low temperatures. These cells co-express the cold-adapted chaperonins Cpn10 and Cpn 60 from the psychrophilic bacterium, *Oleispira antarctica*. The Cpn10 and Cpn 60 chaperonins from *O. antarctica* have 74% and 54% amino acid identity to the *E. coli* GroEL and GroES chaperonins, respectively, and show high protein refolding activities at temperatures of 4–12 °C. When expressed in Arctic Express cells, these chaperonins confer improved protein processing at lower temperatures, potentially increasing the yield of active, soluble recombinant protein (17).

3.1.1.2.5 Tuner (DE3)

Tuner strains are lacZY deletion mutants of BL21, which enable adjustable levels of protein expression throughout all cells in a culture. The lac permease (lacY) mutation allows uniform entry of IPTG into all cells in the population. Unlike lactose (or arabinose), IPTG is an inducer that can enter *E. coli* cells independently from permease pathways. This allows induction with IPTG to occur in a true concentration-dependent fashion that is exceptionally uniform throughout the culture. By adjusting the concentration of IPTG, expression can be regulated from very low expression levels up to the robust, fully induced expression levels commonly associated with pET vectors. Lower level expression may enhance the solubility and activity of difficult target proteins. These strains are also deficient in the lon and ompT proteases, which can degrade recombinant proteins (16).

3.1.1.3 Plasmid vectors

pGEM®-T easy Promega (Mannheim, Germany)

pET-52(+) Novagen, Merck (Darmstadt, Germany)

3.1.1.4 Enzymes

DNA synthesis RevertAi H Minus Thermo Scientific (St. Leon Rot, Germany)

M-MuLV RT

RT-Superscript III Invitrogen (Karlsruhe, Germany)

Dream *Taq* Thermo Scientific (St. Leon Rot, Germany)
Phusion Thermo Scientific (St. Leon Rot, Germany)

DNA restriction *Eco*RI Fermentas (St. Leon Rot, Germany)

KpnIFermentas (St. Leon Rot, Germany)SalIFermentas (St. Leon Rot, Germany)RNase A, HFermentas (St. Leon Rot, Germany)

Other RNase A, H

FastAP

Thermosensitive Thermo Scientific (St. Leon Rot, Germany)

Alkaline Phosphatase

T4 DNA Ligase Fermentas (St. Leon Rot, Germany)

3.1.2 PRIMERS

3.1.2.1 Forward gene-specific primers

GSP1 5'-AAAACATATGGCGTTGAAGCGGGGGC-3'

MalusGTau 5'-TATTACCTCCTCCCCTTGAG-3'
MalusGTin 5'-GCTCTCTTCTCGGACAACGTC-3'

3.1.2.2 3'end RACE primers (reverse)

Oligo dT_{18} 5'-TTTTTTTTTTTTTTTTT-3'

3'-CDS 5'-AAGCAGTGGTAACAACGCAGAGTAC(T)₃₀N₋₁N-3'

Race Long 5'CTAATACGACTCACTATAAGGGCAAGCAGTGGTAACAACGCAG

AGT-3'

Race Short 5'-CTAATACGACTCACTATAAGGGC-3'

3.1.2.3 Profilin primer

Profilin 5'-ACGACCACCTGATGTGCG-3'

(forward)

Profilin 5'-AGAGACCCTGCTCGATAAGG-3'

(reverse)

3.1.2.4 Expression primers with restriction sites

MalGT kpnI F 5'-AAAGGTACCATGGCGTTGAAGCGGGGGC-3'

(Forward)

MalGT sall R 5'-TTTGTCGACTTAGCTGCAGCTGCGAAGATAGG-3'

(reverse)

3.1.2.5 Sequencing primers

Specific primer 5'-GGTACAATGGGATGACGAATC-3,
T7 5'-TAATACGACTCACTATAGGG-3'
T7 term 5'-CTAGTTATTGCTCAGCGGT-3'

Note:

- 1. GSP1 is forward gene specific primer with *Nde* I restriction site.
- 2. Primers 3'-CDS, Race Long and Race Short enable nested PCR amplification.
- 3. Formula used for primer design: $Tm = 4(G + C) + 2(A + T) °C \ge 64 °C$.

3.1.3 CULTURE MEDIA

3.1.3.1 LB medium

LB-Medium composition

EB Wediam composition	
Tryptone	1 %
Yeast extract	0.5 %
NaCl	1 %
pH = 7.0-7.2	
Agar (when required)	1.5 %
Ampicillin (100mg/ml)	100 μg/ml
*Chloramphenicol (34mg/ml)	34 μg/ml

^{*}Only added to liquid LB medium, when required.

LB medium was prepared by autoclaving LB or LB agar medium (20 min, 121 $^{\circ}$ C, 2 bar), cooling it to about 40-50 $^{\circ}$ C and adding 1 μ l of stock antibiotic solution (100 mg/ml ampicillin, 34 mg/ml chloramphenicol) for every ml of LB or LB agar. When preparing LB agar the mixture was poured into the Petri plates in the laminar airflow chamber, where the plates were cooled to harden and covered.

3.1.3.2 SOC Medium

SOC medium composition

boe incaram composition	
Tryptone	2 %
Yeast Extract	0.5 %
NaCl	10 mM
KCl	2.5 mM
MgCl2	10 mM
MgSO4	10 mM
*Glucose	20 mM

^{*}Note: Glucose (sterile filtered stock solution) is added after autoclaving.

3.1.3.3 Medium for plant cultures

LS medium composition	[mg/l]
NH_4NO_3	1650
KNO_3	1900
${ m MgSO_4}$	180.54
$\mathrm{KH_{2}PO_{4}}$	170
$CaCl_2$	332.02
FeNaEDTA	36.7
H_3BO_3	6.2
$MnSO_4 \times H_2O$	16.9
$ZnSO_4 \times 4 H_2O$	8.6
KI	0.83
$Na_2MoO_4 \times 2 H_2O$	0.25
CuSO ₄ x 5 H ₂ O	0.025
$CoCl_2 \times 6 H_2O$	0.025
Thiamine hydrochloride	0.4
Myo-Inositol	100
2,4-Dichlorophenoxyacetic acid (hormone)	0.22
1-Naphtylacetic acid (hormone)	0.186
Sucrose	30000

Note: The medium was already prepared (18).

3.1.4 BIOCHEMICAL KITS

Operation	Kit used	
Plasmid DNA isolation	Plasmid Miniprep Kit	ThermoScientific (St. Leon
		Rot, Germany)
RNA isolation	RNeasy Plant Minikit	Qiagen (Hilden, Germany)
Reverse transcription	SuperScript III First-	Invitrogen (Karlsruhe,
	Strand Synthesis System	Germany)
Reverse transcription	RevertAid H Minus First	Thermo Scientific (St.
	Strand cDNA Synthesis	Leon Rot, Germany)
	Kit	
DNA gel extraction	GeneJET Gel Extraction	ThermoScientific (St. Leon
		Rot, Germany)

3.1.5 BUFFERS AND SOLUTIONS

3.1.5.1 TBE Buffer for agarose electrophoresis

Composition of 10xTBE buffer

Tris	108 g
Boric acid	54 g
0.5 M EDTA (pH = 8.0)	40 ml
Deionized H ₂ O	Add to total volume of 1000 ml

3.1.5.2 Buffers for plasmid isolation

Buffers used in manual alkaline plasmid isolation protocol

	process process	-	
Buffer 1	Tris-HCl (pH 8)	25	mM
	EDTA (pH 8)	10	mM
	Adjust pH value to 8	with HCl	
	*RNase A	100	μg/ml
Buffer 2	NaOH	0.2	M
	SDS	1 %	(w/v)
Buffer 3	Potassium acetate	3	M
	Glacial acetic acid	11.5 %	(v/v)

Note: *Add just before use.

3.1.5.3 Buffers and solutions for immobilized metal affinity chromatography (IMAC)

3.1.5.3.1 0.1 M potassium phosphate buffer pH 8 (KPi buffer)

Potassium Phosphate buffer of pH=8 and 0.1M (KPi buffer)

94 ml of K₂HPO₄ 1 M solution 6 ml of K₂HPO₄ 1 M solution

The volume 94 ml of K_2HPO_4 1 M solution and 6 ml of K_2HPO_4 1 M solution were mixed together diluted to 1000 ml and titrated to pH = 8 with 5N NaOH.

3.1.5.3.2 Basic buffer

Components of basic	buffer	Final Concentration
KPi buffer	0.5 1	0.050 M
NaCl	17.532 g	0.300 M
Deionized water	0.51	/

3.1.5.3.3 Imidazole buffers

Imidazole solution of 500 mM was mixed with Basic buffer to produce buffers used in column elution:

Imidazole buffers	10 mM	20 mM	50 mM	250 mM
Imidazole stock solution	0.2 ml	0.4 ml	1 ml	5 ml
Basic buffer	9.8 ml	9.6 ml	9 ml	5 ml

3.1.5.4 Buffer and solutions for SDS PAGE

3.1.5.4.1 3x SDS loading dye

3x SDS loading dye composition

H_2O	4.4 ml
Stacking gel buffer	6.25 ml
Glycerol	5 ml (~6.3 g)
SDS	1 g
Bromophenol blue	21 mg
*DTT (1M)	200 mM
Bromophenol blue	21 mg

^{*}DTT was added just before use to make the final concentration of 200 mM using 1 M stock DTT (stored at 4 °C).

3.1.5.4.2 Polyacrylamide gel

The gel was composed of stacking and 10.5 % separation gel following the recipe below:

Consistence of one PAA-gel (0.75 mm)

-	Separation gel	Stacking gel
	10.5% acrylamide	5% acrylamide
Separation gel buffer	2.5 ml	
Stacking gel buffer		1.25 ml
Acrylamide/Bisacrylamide 30:0.8 %	3.5 ml	0.75 ml
H_2O	3.8 ml	3ml
10 % SDS Solution	100 μ1	50 μ1
10 % APS Solution	50 μl	15 μl
TEMED	5 μ1	5 μl

Separation gel buffer

Buffer was made by dissolving 181.5 g of Tris in distilled H₂O, adjusting pH to 8.8 with HCl and adding H₂O to total volume of 1000 ml.

Stacking gel buffer

Buffer was made by dissolving 60.5 g of Tris in distilled H_2O , adjusting pH to 6.8 with HCl and adding H_2O to total volume of 1000 ml.

3.1.5.4.3 SDS PAGE Running buffer

Composition of 10x SDS running buffer

Tris	30.3 g
Glycine	144.0 g
SDS	10.0 g
H_2O	add to total volume of 1000 ml

3.1.5.4.4 Coomassie staining

Coomassie staining solution

Ethanol	500 ml
Coomassie brilliant blue R250	0.5 g
Acetic acid	100 ml
H_2O	add to total volume of 1000 ml

	Destaining solution I	Destaining solution II
Ethanol (denatured)	500 ml	165 ml
Acetic acid	100 ml	50 ml
H_2O	add to1000ml	add to 1000 ml

3.1.5.5 Markers used in gel electrophoresis

GeneRuler 1 kb DNA Ladder Thermo Scientific (St. Leon Rot,

Germany)

Unstained Protein Molecular Weight Marker Fermentas (St. Leon Rot, Germany)

3.1.6 OTHER SOLUTIONS AND REAGENTS

Reagents

DMSO Fluka, (Buchs, CH)

IPTG Sigma (Deisenhofen, Germany)
X-Gal Sigma (Deisenhofen, Germany)
dNTPs Fermentas (St. Leon Rot, Germany)

Roth (Karlsruhe, Germany) **Imidazol** Roth (Karlsruhe, Germany) NaH₂PO₄ Na₂HPO₄ Roth (Karlsruhe, Germany) Roth (Karlsruhe, Germany) Isopropanol Ethanol Roth (Karlsruhe, Germany) Chloroform Roth (Karlsruhe, Germany) Ethidiumbromid Roth (Karlsruhe, Germany) Tris Roth (Karlsruhe, Germany) Agarose Roth (Karlsruhe, Germany) 6x Loading dye Roth (Karlsruhe, Germany)

Solutions

Lysozyme (stock solution of 10 mg/ml)

3.1.7 EQUIPMENT

PCR cycler

Eppendorf Mastercycler Personal Biometra T Professional Basic

UV spectrophotometer Ultraspec 3100 Pro

SDS PAGE electrophoresis module BIO-RAD Mini-PROTEAN

Centrifuge

Beckmann GS-6R Sigma 1-15K

Eppendorf Centrifuge 5415D

Ultra-wave cell disrupter/homogenizer Branson Sonifier 250

3.2 Methods

3.2.1 INDUCTION AND HARVESTING OF PLANT SUSPENSION CULTURE

Induction

Plant cell culture of *Malus x domestica* Cox's Orange Pippin was induced with 1 ml of inactivated solution of *Erwinia amylovora* (c = 1~000~000~CFU/ml) on the fifth day after the subdivision was made. The cell culture was harvested after 9 hours.

Harvest

Erlenmeyer flask containing the culture was vacuum filtered in Buchner funnel and transferred to a mortar. Immediately, liquid nitrogen was added to flash freeze the material, protecting it from RNA digestion. Then it was ground into a fine powder preserving it frozen by adding additional liquid nitrogen when necessary. The material was stored in microcentrifuge tubes and temporarily placed into liquid nitrogen until it was transferred into a freezer at -80 °C.

3.2.2 RAPID AMPLIFICATION OF cDNA ENDS (RACE)

RACE is a procedure where cDNA is used in PCR amplification to obtain the target gene sequence resulting in amplicons corresponding to the 5' or 3' end of the mRNA. In the 3' RACE the first step is the mRNA conversion to cDNA using reverse transcriptase and oligo dT primer. The generated cDNA is then amplified using a primer capable of annealing to the poly A region and gene-specific primer, which is designed from pre-existing sequence data (partial cDNA, genomic exon or peptide) (19).

Another option is the so-called nested 3' RACE. cDNA synthesis is performed using a modified oligo dT primer (frequently termed an anchor primer, in this case 3'-CDS), the 5' half of which consists of a chosen sequence, which is long enough to permit the annealing of anchor specific primer (Race Long) in the first PCR amplification. This primer's 5' end also contains long enough another chosen sequence to allow annealing of a third primer (Race Short), which is used in RACE amplification with Cox's Orange Pippin plant material.

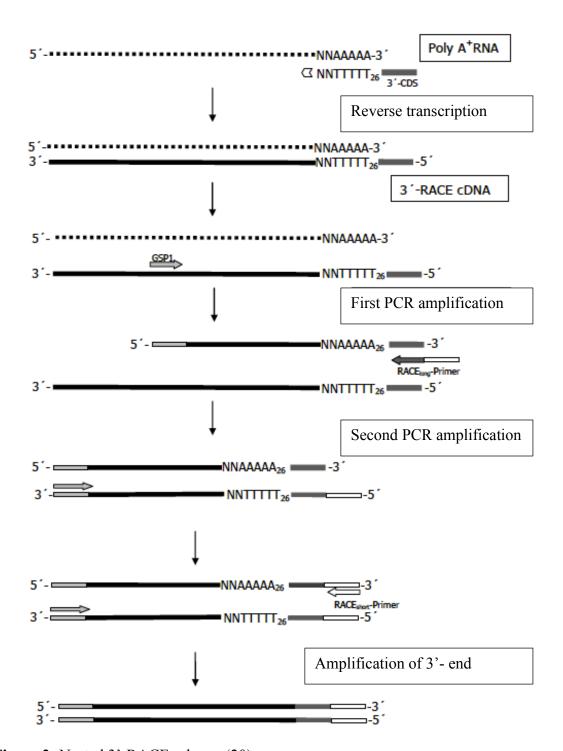


Figure 2: Nested 3'-RACE scheme (20).

3.2.2.1 RNA extraction

For RNA extraction Qiagen RNeasy Plant Minikit was used following protocol Purification of Total RNA from Plant Cells and Tissues and Filamentous Fungi from RNeasy Mini Handbook (21).

Note: Plant material was cooled on ice during the procedure when possible. RLT buffer used in the protocol was prepared by adding β -mercapto ethanol (BME) in the ratio 10 μ l of BME to 1 ml of RLT buffer to inhibit RNA degradation. The optional DNA digestion in step 6 was left out, while additional centrifugation in step 10 was performed. The DNA was eluted from the membrane in two elution steps with 30 μ l of RNase-free water used in each one. The concentration and purity of the isolated RNA was accessed with Ultraspec 3100 Pro.

3.2.2.2 Reverse Transcription

3.2.2.2.1 SuperScript III First-Strand Synthesis System

Procedure was adapted from protocol supplied with the kit (22).

Note: After the components of the kit were thawed, mixed and briefly centrifuged, they were stored on ice.

4 μl of RNA template was used combined with 4 μl of oligo dT₁₈ primer and 21 μl of RNase-free water. The mixture was then incubated at 70° C for 10 min and then cooled down to 40-50 °C. Next, 10 μl of 5x first strand buffer, 5 μl of 0.1 M DTT and 2.5 μl mixture of 10 mM dNTPs were added, mixed gently, and collected by brief centrifugation. The mixture was incubated at 40 °C for 2 minutes before 1.5 μl of RT-Superscript III was added to the reaction mix and mixed by pipetting. The mix was incubated at 50 °C for 60 minutes. The reactions were terminated by incubating the mix at 70 °C for 15 minutes and collected by brief centrifugation. cDNA was stored at -20 °C. To one sample of 1.5 μl of RNase H was added and incubated for 20 min at 37 °C to test whether the residual RNA interferes with the PCR amplification.

Reverse transcrip	ition	mixfiire	composition	tor	К I –	Sunersci	ant III

RNA template	4 μl
Primer Oligo dT ₁₈	5 μ1
DTT (0.1 M)	5 μl
dNTP's (each 10 mM)	2.5 μl
5x First strand buffer	10 μl
RT-Superscript III	1.5μl
RNase-free water	Add to 50 µl

3.2.2.2.2 RevertAid H Minus First Strand cDNA Synthesis Kit

Procedure was adapted from protocol supplied with the kit (23).

Note: After the components of the kit were thawed, mixed and briefly centrifuged, they were stored on ice.

9 μl of RNA template was used and combined with 1 μl of 3'-CDS primer and RNase free water was added to make up to 12 μl. The mixture was then incubated at 65 °C for 5 min and then cooled down. Next, 4 μl of 5x first strand buffer, 1 μl of 0.1 M Ribo Lock and 2 μl mixture of 10 mM dNTPs was added, mixed gently, and collected by brief centrifugation. Then, 1 μl of RevertAid H Minus reverse transcriptase was added to the reaction mix and mixed by pipetting. The mix was incubated at 42 °C for 1 hour. The reaction was terminated by incubating the mix at 70 °C for 5 minutes and collected by brief centrifugation. 1 μl of RNase H was added to the tube, incubated for 20 min at 37 °C and stored at -20 °C.

Reverse transcription mixture composition for RevertAid H Minus RT

RNA template	9 μ1
Primer 3'-CDS	1 μl
RNase-free water	2 µl
RIBO lock	1 μl
dNTPs (10 mM each)	2 μ1
5x First strand buffer	4 µl
RevertAid H Minus M-MuLV Reverse Transcriptase	1 μl

3.2.2.3 PCR amplification

The program listed below was used for every PCR reaction described in the results section.

PCR Program used for amplifications

	Time	Temperature [°C]	Number of cycles
Initial denaturation	2 min	95	1
Denaturation	15s	95	
Annealing	20 s	54	30
Step Extension	2 min	72	
Final Extension	5 min	72	1
Reaction stop	Hold indefinitely	4	1

Note: Denaturation temperature was increased to 98 °C for Phusion polymerase.

3.2.2.3.1 Phusion polimerase

In Phusion High-Fidelity DNA Polymerases, a unique dsDNA-binding domain is fused to a Pyrococcus-like polymerase, therefore the enzyme possesses the following activities: $5' \rightarrow 3'$ DNA polymerase activity and $3' \rightarrow 5'$ exonuclease (proofreading) activity. It generates blunt ends in the amplification products (24).

Procedure was adapted from protocol supplied with the kit (24).

Note: All solutions were gently vortexed and briefly centrifuged after thawing. A 25 μ l PCR tube was placed on ice and the components were added in the order listed below with the exception of polymerase, which was added last. PCR reactions were all set up on ice.

Standard PCR amplification mixture for Phusion polymerase	[µl]
Template	1
Forward Primer	0.5
Reverse Primer	0.5
10 mM dNTPs	1
Buffer HF 5x	5
PHUSION	0.25
DMSO (optional)	0.5
RNase-free Water	Add to 25

The mixture was mixed by pipetting and placed in a thermal cycler. PCR was performed according to the program given in 3.2.2.3 with Eppendorf Mastercycler Personal.

3.2.2.3.2 Dream Taq

Procedure was adapted from protocol supplied with the kit (25).

Note: PCR reactions were all set up on ice.

All solutions were gently vortexed and briefly centrifuged after thawing. A thinwalled PCR tube was placed on ice and the components were added in the order listed below with exception of polymerase, which was added last.

PCR amplification mixture for Dream <i>Taq</i>	[µl]
Template	1
Primer Forward	0.5
Primer Reverse	0.5
10 mM dNTP	1
Green Buffer 10x	2.5
Dream <i>Taq</i>	0.5
DMSO (optional)	0.5
RNase-free water	Add to 25

The mixture was mixed by pipetting and placed in a thermal cycler. PCR was performed according to the program given in 3.2.2.3 with Eppendorf Mastercycler Personal or Biometra T Profesional Basic.

3.2.3 AGAROSE ELECTROPHORESIS

Agarose was weighed into a glass beaker and 50 ml of buffer 1xTBE was added. The beaker was placed into the microwave oven and heated until the agarose was fully dissolved. The mixture was then left to cool down to approximately 50 °C. Then, 3.5 µl of ethidium bromide was added, mixed and the gel was poured into the gel mold.

Agarose gel composition	
Agarose	500 mg
Buffer TBE 1x	50 ml
Ethidium Bromide	3.5 µl

When the gel was set, it was taken out of the mold and placed into the AEG chamber. The camber was filled with just enough 1xTBE buffer to completely submerge the gel. Then, the gel wells were filled with samples obtained in PCR amplification (3.2.2.3). The gel tank was the closed and connected to the power source of 85 V. When the marker dye travelled for sufficient length (app. 40 min), power source was switched off and picture of the gel was taken under the UV illumination in the dark room.

Note: Molecular size marker GeneRuler 1 kb DNA Ladder was run alongside the samples for DNA size evaluation.

3.2.4 DNA FRAGMENT EXTRACTION

DNA fragments were extracted from agarose gels using GeneJET Gel Extraction kit following the protocol supplied in the kit (26).

Note: All steps were carried out at room temperature and all centrifugation was carried out at >12000g. Steps 4 and 6 of the protocol were left out, while in the last step the purification column membrane was eluted with 20 μ l of elution buffer.

3.2.5 LIGATION OF INSERT INTO A PLASMID VECTOR

3.2.5.1 Plasmid vector pGEM-T Easy

Vector pGEM-T Easy was used to clone the sequence of 3'end of target mRNA. The vector is a high-copy-number vector containing T7 and SP6 RNA polymerase promoters flanking a multiple cloning region within the α -peptide coding region of the enzyme β -galactosidase. Insertional inactivation of the α -peptide allows identification of recombinants by blue/white screening on indicator plates (27).

The pGEM-T Easy plasmid is a linearized vector with a single 3'-terminal thymidine at both ends. The T-overhangs at the insertion site improve the efficiency of ligation of PCR products by preventing recircularization of the vector and providing a compatible overhang for PCR products generated by certain thermostable polymerases including Dream *Taq* polymerase (27).

The pGEM-T Easy Vector multiple cloning region is flanked by recognition sites for the restriction with *Eco*RI providing single-enzyme digestion for release of the insert (27).

The pGEM-T Easy Vector, insert DNA and 2x Rapid ligation buffer tubes were thawed and briefly centrifuged to collect the contents at the bottom of the tubes. Ligation reaction solution was the set up in the order described below with the T4 ligase added last. Then, solution was mixed by pipetting and incubated for 1 hour at room temperature or overnight at 4 °C (27).

Ligation solution composition for pGEM-T Easy	[μl]
Insert (PCR product amplified with Dream <i>Taq</i>)	3.5
2x Rapid ligation buffer	5
Vector pGEM-T Easy	1
Ligase T4	0.5
RNase-free Water	Add to 10

3.2.5.2 Plasmid vector pET-52(+)

Plasmid pET-52+ was used as an expression vector for the target protein. The multiple cloning region is followed by an optional thrombin recognition site and a C-terminal His Tag coding sequence. The presence of His Tag coding sequence enables IMAC protein purification with Ni-agarose possible (28).

Note: The plasmid pET-52(+) needed to be linearized with the same restriction enzymes as the amplicon to enable subsequent integration of the target insert sequence.

The plasmid, insert DNA and T4 DNA ligase buffer were thawed and briefly centrifuged to collect the contents at the bottom of the tubes. Ligation reaction was the set up in the order described below, except that T4 ligase was added last. The ligation solution was mixed by pipetting and incubated for 1 hour at room temperature or overnight at 4 °C (29).

Ligation solution composition for pET-52(+)	[µl]
*Amplicon with restriction sites (obtained using MalGT_kpnI_F	7.5
and MalGT_salI_R)	
10x T4 DNA ligase buffer	1
**Vector pET-52+	1
Ligase T4 DNA	0.5
RNase-free Water	Add to 10 µl

^{*}Digested as described in 3.2.8.2.1.

^{**}Digested as described in 3.2.8.2.2.

3.2.6 TRANSFORMATION OF E. COLI WITH PLASMID DNA

3.2.6.1 Standard transformation protocol

Suspension of competent cells (stored at -80 °C) was left on ice approximately 10-15 minutes to thaw. The cells were carefully mixed by finger-flicking the tube one to three times and added to ligation solution in a ratio of 1 to 10, which meant 100 μ l of competent cells to 10 μ l of ligation solution. The mixture was left on ice for about 15 minutes so that DNA could anneal to the membrane. The tubes were then heated for 45 seconds in a 42 °C water bath before placing the tubes on ice for 2 min. Next, 400 μ L of SOC medium was added to every 50 μ l of competent cells and the tube was placed into an rotary shaker incubator at 37 °C for at least half an hour for cells to regenerate and accommodate the newly transformed DNA. 250 μ l of cell suspension was spread onto LB agar plates with appropriate antibiotics to grow colonies overnight.

The prominent colonies were picked and transferred to a liquid LB medium with the appropriate selection antibiotic (ampicillin, and when required chloramphenicol). After 24 hours the cultures were either harvested and plasmid DNA extracted or inoculated into a larger vessel with LB medium for protein expression.

3.2.6.2 Blue-white screening

30 minutes prior to the transformed XL1-Blue cells were spread on LB agar ampicillin plate a solution of 40 μ l of X-Gal (20 mg/ml) and 10 μ L of IPTG (1 M) diluted in 500-600 μ l of H₂O was homogenously applied over the surface of Petri dish.

3.2.7 PLASMID ISOLATION

3.2.7.1 Plasmid Miniprep Kit for plasmid DNA isolation

Pelleted bacterial cells are subjected to SDS/alkaline lysis to liberate the plasmid DNA. The resulting lysate is neutralized, which creates the conditions for binding of plasmid DNA on the silica membrane in the spin column. Cell debris and SDS precipitate are pelleted by centrifugation, and the supernatant containing plasmid

DNA is loaded onto the spin column membrane. The adsorbed DNA is washed to remove contaminants, and then eluted in a small volume (30).

The plasmid DNA was extracted from cells, which were grown as described above (3.2.6.1), following the procedure from protocol supplied with the kit (30).

Note: In the last step the membrane bound DNA was eluted in two steps using 30 μ l of the elution buffer in the first and 20 μ l in the second elution step.

3.2.7.2 Manual Alkaline Plasmid Isolation (a protocol from Susanne Kühle, AG Beerhues)

Cells were grown and harvested as described above (3.2.6.1). The culture was transferred in a 2 ml microcentrifuge tube and harvested by centrifugation at 5000 rpm for 5 min at room temperature. The supernatant carefully was decanted.

The pelleted cells were resuspended by vortexing in 300 μ l of the cold Buffer 1 with added RNAase until no cell clumps remained. A volume of 300 μ l of the Buffer 2 was added and mixed carefully and thoroughly by inverting the tube 4-6 times until the solution became viscous and slightly clear. The solution was incubated no longer than 5 min at room temperature to avoid denaturation of plasmid DNA. Next, 300 μ l of the Neutralization Solution was added and mixed immediately and thoroughly by inverting the tube 4-6 times.

The mixture was centrifuged for 10 min at maximum speed to pellet cell debris and chromosomal DNA. The supernatant was carefully transferred to a new 2 ml microcentrifuge tube and an equal volume of chloroform was added. The two-phase system was then centrifuged for 10 minutes at maximum speed.

The supernatant was carefully transferred to a new 2 ml microcentrifuge tube. Isopropanol was added in ratio of ten parts of supernatant to seven parts of isopropanol and mixed by vortexing. The suspension was then centrifuged at maximum speed for 30 minutes.

Then, the supernatant was decanted away. $500 \mu l$ of 70 % ethanol was added to wash the DNA and centrifuged at maximum speed for 5 minutes at room temperature.

The liquid was carefully pipetted away and the DNA was left to dry at room temperature for around 15 minutes. Finally, 50 μ l of Tris Buffer was added and the plasmid DNA was stored at -20 °C.

3.2.8 RESTRICTION DIGESTION OF DNA

3.2.8.1 EcoRI digestion procedure

The reaction mixture was set up in the order described below with the exception that *Eco*RI was added last. The ligation solution was mixed gently by pipetting, spun down and incubated for 1 hour at 37 °C (31).

Digestion of plasmid with EcoRI

pGEM-T Easy/insert	3 μl
Nuclease-free water	5.5 μl
10x Buffer <i>Eco</i> RI	1 μl
<i>Eco</i> RI	0.5 μl

3.2.8.2 DoubleDigest procedure with KpnI and SalI

The first digestion was performed in 1X Tango buffer (low salt concentration buffer) with 4-fold excess of *Kpn*I with incubation at 37 °C for 1 hour. With the first digestion complete, one-eight volume of starting reaction mixture of 10X Tango buffer (*equation 1) was added (producing a high salt concentration buffered reaction). Finally, a 2-fold excess of *Sal*I was added and the reaction was incubated at 37 °C for 1 hour (32).

*V=A/8, (equation 1),

where *V is the volume of the 10x Tango buffer and A is the starting volume of reaction mixture (32).

3.2.8.2.1 Insert sequence digestion

To 30 μ l of insert template (DNA sequence amplified with primers given in 3.1.2.4), 4 μ l of Tango Buffer and 4 μ l of *Kpn*I stock solution were added, mixed by pipetting, spun down and then incubated at 37°C for 1 hour. Next, 4 μ l of Tango Buffer and 2 μ l of *Sal*I stock solution were added. The mixture was homogenized by pipetting, spun down and incubated at 37°C for one hour and a half. 9 μ l of 6x Loading Dye was added just before the agarose gel electrophoresis.

Double digestion of insert amplified using primers given in 3.1.2.4

	\mathcal{E}_1
Insert	30 μl
Tango Buffer	4 μl
KpnĪ	4 µl
*Tango Buffer	4 μ1
*SalI	2 μ1

^{*}Added after the *Kpn*I digestion step.

3.2.8.2.2 Plasmid pET-52(+) Digestion

To the volume of 50 μl of plasmid template (circular pET-52(+) plasmid) 8 μl of Tango Buffer and 15 μl of *Kpn*I stock solution were added. The mixture was homogenized by pipetting, spinned down and then incubated at 37 °C for 1 hour. Next, 8 μl of Tango Buffer and 8 μl of *Sal*I stock solution were added, mixed by pipetting, spun down and incubated at 37 °C for 1 hour. Last, 3 μL of FAST alkaline phosphatase stock solution was added to the mixture which was then mixed by pipetting, spun briefly and incubated at 37 °C for 15 minutes. Heating the mixture to 80 °C for 20 minutes stopped reactions. 18 μl of 6x Loading Dye were added just before the agarose gel electrophoresis. This procedure was repeated because the first attempt to ligate the insert into plasmid pET-52(+) failed.

Double restriction of the plasmid	First attempt	Second attempt
Plasmid	50 μl	80 μ1
Tango Buffer	8 μ1	13 μl
KpnI	15 µl	15 μl
*Tango Buffer	8 μ1	13 μl
*SalI	8 μ1	8 μ1
**Alkaline Phosphatase	3 μ1	3 µl

^{*} Added after the *Kpn*I digestion.

^{**} Added after the SalI digestion.

3.2.8.2.3 Test digestion of isolated plasmid DNA

1 μ l of Tango Buffer and 2 μ l of *Kpn*I stock solution were added to 3 μ l of isolated plasmid pET-52(+)/target insert. The mixture was homogenized by pipetting, spun down and then incubated at 37 °C for 1 hour. Next, 1 μ l of Tango Buffer and 1 μ l of *Sal*I stock solution were added. The mixture was again mixed by pipetting, spun down and incubated at 37 °C for 1 hour. 2 μ l of 6xloading dye was added just before the agarose gel electrophoresis.

Test digestion of the isolated plasmid pET-52(+)/target insert

Plasmid pET-52(+)/insert	3 μ1
Tango buffer	1 μl
KpnI	2 μl
*Tango buffer	1 μl
*SalI	1 μ1

^{*} Added after the *Kpn*I digestion.

3.2.9 HETEROLOGOUS EXPRESSION OF TARGET GENE IN E. COLI

3.2.9.1 Expression of the target enzyme

A number of *E. coli* expression host strains were transformed with the plasmid pET52-(+)/InsertExp and incubated overnight at 37 °C on LB agar plate with ampicillin and chloramphenicol (for Rosetta (DE3) and Origami (DE3)), or ampicillin only (for Tuner (DE3) and Arctic express (DE3)). Individual colonies were picked from each plate, inoculated into 4 ml of LB medium with appropriate antibiotics and grown at 37 °C overnight with shaking at 200 rpm. After 24 hours the cultures were diluted 1:50 into 200 ml LB medium with appropriate antibiotics for protein expression.

Table 1: OD_{600} and time of induction.

Time	Reference	Rosetta (DE3)	Origami (DE3)	Arctic express	Tuner (DE3)
	$[OD_{600}]$	$[\mathrm{OD}_{600}]$	$[OD_{600}]$	$(DE3) [OD_{600}]$	$[OD_{600}]$
0	0	0.067	0.042	0.056	0.035
2	0	*0.549	0.314	*0.648	0.200
3	0	X	*0.616	X	0.664

^{*}Induction with 200 µl of 1M IPTG.

Optical density at 600 nm (OD_{600}) was recorded on an hourly basis (Table 1). When OD_{600} reached approximately 0.6, the cultures were induced with 200 μ l of 1 M IPTG and left to grow overnight (20-22 hours at 37 °C).

3.2.9.2 Protein isolation and purification of 6xHis-tagged target protein with immobilized metal affinity chromatography

The high affinity of the Ni-NTA resins for 6x His-tagged proteins or peptides is due to both the specificity of the interaction between histidine residues and immobilized nickel ions and to the strength with which these ions are held to the NTA resin. QIAexpress nickel-chelating resin utilizes NTA (nitrilotriacetic acid) ligand. NTA has a tetradentate-chelating group that occupies four of six sites in the nickel coordination sphere (33).

3.2.9.2.1 Preparation of a cell extract

Cell culture obtained in 3.2.9.1 was transferred into 50 ml centrifuge tubes and centrifuged for 8 min at 3500 rpm and 4 °C in a Beckmann GS-6R centrifuge. Supernatant was decanted and the process was repeated adding the remaining cell culture to harvest all cells. From here on, it was necessary to store the cell material on ice to prevent protein degradation.

The cell pellets were re-suspended with the lowest amount possible (1-2 ml) of 10 mM imidazole buffer. Lysozyme solution was added to produce the final lysozyme concentration of 1 mg/ml (\sim 200 μ l). Then, the suspension was left on ice for 30 min to 1 hour.

In the next step cell were lysed by sonification on ice with ultra-wave cell disrupter/homogenizer Branson Sonifier 250. 45 seconds long cycles alternating cell disruption and resting/cooling were used. The cycle was repeated three times, with the duty cycle set at 30 and the output of 2. Lysate was then centrifuged for 30 minutes at 10000 g and 4 °C with a Sigma 1-15K centrifuge.

The supernatant (soluble fraction) was collected into a fresh tube and was filtered through a $0.45~\mu m$ filter to prevent column clogging. Residual material (insoluble fraction) was re-suspended in 1 ml of basic buffer and stored on ice for later SDS-PAGE analysis.

3.2.9.2.2 IMAC

First, 500 μ l of 50% Ni-NTA-agarose suspension was pipetted into 1.5 ml microcentrifuge tube. Excess liquid (~250 μ l) was carefully removed after short centrifugation with Eppendorf Centrifuge 5415D. The resin was washed two times with 250 μ l of basic buffer and equilibrated by washing two times with 10 mM imidazole buffer. Last, 1250 μ l of the cleared lysate (soluble fraction of cell lysate) were added into the microcentrifuge tube with Ni-NTA-agarose, which was then closed and placed on a multi-rotator Biosan RS24-Multi Bio multi-rotator for one hour to rotate at 4 °C.

The lysate-preincubated resin was loaded onto a column with the bottom outlet capped. When the resin settled at the bottom of the column, bottom cap was removed. Flow-through was collected and stored for SDS-Page analysis. Then, the column was washed twice with 500 μ l of 20 mM imidazole buffer and twice with 500 μ l of 50 mM imidazole buffer. Finally, the protein was eluted four times with 500 μ l of 250 mM imidazole buffer, with an optional washing with 375 μ l of 500 mM imidazole stock solution. All wash and elution fractions were collected and stored for SDS PAGE analysis.

Table 2: The collected fractions in elution of Ni²⁺ affinity column

Fraction	mM Imidazole buffer	Volume [µl]
Flow-through (FT)	X	1250
Wash Fraction 1 (W ₁)	20	500
Wash Fraction 2 (W ₂)	20	500
Wash Fraction 3 (W ₃)	50	500
Wash Fraction 4 (W ₄)	50	500
Elution Fraction 1 (E ₁)	250	375
Elution Fraction 2 (E ₂)	250	375
Elution Fraction 3 (E ₃)	250	375
Elution Fraction 4 (E ₄)	250	375
Elution Fraction 5 (E ₅)	*500 mM solution	*500

^{*}Optional.

3.2.10 SDS PAGE

3.2.10.1 Sample preparation

Soluble fraction of the cell lysate, insoluble fraction of the cell lysate and flow-through fraction (obtained in 3.2.9.2.1 and 3.2.9.2.2) were diluted 10- or 20-fold as described below.

Dilutions of Soluble Fractions (SF), Insoluble Fractions (IF) and Flow-through (FT)

	Volume of SF, IF and FT [µl]	Volume of Basic buffer [µl]
Rosetta (DE3)	10	190
Origami (DE3)	10	190
Arctic express (DE3)	20	180
Tuner (DE3)	20	180

5 μ l from each elution and wash fraction was taken to make 15 μ l of protein solution by adding 5 μ l of 3x SDS loading dye with dithiotreitol (DTT) and 5 μ l deionized water. Samples were then incubated at 90°C for 5-10 min, cooled down and loaded onto an SDS PAGE gel.

Sample preparation of wash and elution fractions for SDS PAGE	Volume [μl]
Fraction samples	5
3x Loading dye with DTT	5
Deionized H ₂ O	5

3.2.10.2 SDS PAGE

The glass cassette with the gel was inserted into the BIO-RAD Mini-PROTEAN electrophoresis module. The inner and outer chamber was filled with SDS running buffer. The comb was taken out just before the samples and the protein ladder were loaded. The lid was closed and the module connected to the source of power supply. The separation was carried out with a voltage of 100 V until the blue dye reached the bottom of the glass cassette. After the completion of electrophoresis the glass cassette was taken out of the module and dismantled to obtain the gel.

3.2.10.3 Coomassie staining

The SDS PAGE gel was rinsed with distilled water for 15 min to remove SDS. The gel was left to stain in the Coomassie staining solution overnight on a tumble table and then destained for one hour in destaining solution I, followed by 1-2 hours in destaining solution II.

3.3 Research work schemes

3.3.1 RACE OF GOLDEN DELICIOUS

Harvest of Golden Delicious cell suspension culture not induced with Erwinia *amylovora* culture (3.2.1) Total RNA extraction, followed by reverse transcription (3.2.2.1) using Oligo dT_{18} primer PCR amplification with Phusion polymerase (3.2.2.3.1) using GSP1, Oligo dT₁₈ and profilin primers Agarose electrophoresis (3.2.3) and gel extraction of target DNA fragment (3.2.4) PCR amplification with Dream Taq (3.2.2.3.2) using GSP1 and Oligo dT₁₈ Agarose electrophoresis (3.2.3) and gel extraction of target DNA fragment (3.2.4) Ligation of the DNA fragment into pGEM-T Easy (3.2.5.1) Transformation of E. coli XL1 Blue (3.2.6.1) with pGEM-T Easy/insert Picking the white colonies from blue-white screening (3.2.6.2) to produce overnight bacterial cultures Plasmid DNA isolation (3.2.7.2) EcoRI plasmid test digestion (3.2.8.1), followed by analysis of inserted nucleotide sequence with agarose electrophoresis (3.2.3) Insert DNA sequencing Elongating the target gene sequence Designing new gene-specific primers capable of annealing to the newly acquired part of the gene

3.3.2 RACE OF COX'S ORANGE PIPPIN

Harvest of Cox's Orange Pippin cell suspension culture induced with Erwinia amylowora culture (3.2.1) Total RNA extraction, followed by reverse transcription (3.2.2.2.2) using 3'-CDS primer PCR amplification with Dream Taq polymerase (3.2.2.3.2) using MalusGTau, Race Long and profilin primers Agarose electrophoresis (3.2.3) and gel extraction of the target DNA fragment (3.2.4) PCR amplification with Dream *Taq* polymerase (3.2.2.3.2) using MalusGTin and Race Short primers Agarose electrophoresis (3.2.3) and gel extraction of the target DNA fragment (3.2.4) Ligation of the target DNA fragment into pGEM-T Easy (3.2.5.1) Transformation of E. coli XL1 Blue (3.2.6.1) with pGEM-T Easy/insert Picking the white colonies from blue-white screening (3.2.6.2) to produce overnight bacterial cultures Plasmid DNA isolation (3.2.7.1) EcoRI plasmid test digestion (3.2.8.1), followed by analysis of inserted nucleotide sequence with agarose electrophoresis (3.2.3) Insert DNA sequencing Completion of target gene sequence

3.3.3 CONSTRUCTION OF THE EXPRESSION VECTOR

Transformation of *E. coli* XL1 Blue (3.2.6.1) with plasmid pET-52(+) \downarrow Picking the colonies to produce overnight bacterial cultures Plasmid DNA isolation (3.2.7.2) Agarose electrophoresis (3.2.3) and gel extraction of the plasmid pET-52(+) (3.2.4) PCR amplification of target gene with Dream Taq polymerase using MalGT kpnI F and MalGT salI R primers (3.2.2.3.2) Agarose electrophoresis (3.2.3) and gel extraction of InsertExp (3.2.4) InsertExp (3.2.8.2.1) and pET-52(+) restriction (3.2.8.2.2) with KpnI and SalI Agarose electrophoresis (3.2.3) and gel extraction of InsertExp and pET-52(+) (3.2.4) Ligation of InsertExp into pET-52(+) (3.2.5.2) Transformation of *E. coli* XL1 Blue with the expression vector (3.2.6.1) Picking the colonies to produce overnight bacterial cultures Plasmid DNA isolation (3.2.7.2) Test restriction with KpnI and SalI (3.2.8.2.3), followed by analysis of inserted nucleotide sequence with agarose electrophoresis (3.2.3) \downarrow Sequence conformation

3.3.4 HETEROLOGOUS EXPRESSION IN E. COLI

Transformation of Rosetta (DE3), Origami (DE3), Tuner (DE3), and Arctic express (DE3) *E. coli* expression strains (3.2.6.1) with the expression vector pET-52/InsertExp

Picking the colonies to produce overnight bacterial cultures

Dilution of cultures in the ratio of 1:50 into fresh LB medium

Induction of target gene expression with IPTG (3.2.9)

Overnight incubation of cultures (3.2.9)

Harvest of cell from overnight cultures by centrifugation and cell lysis induced by addition of lysozyme and sonication (3.2.9)

Recombinant protein isolation with immobilized metal affinity chromatography (3.2.9)

\$\frac{1}{2}\$

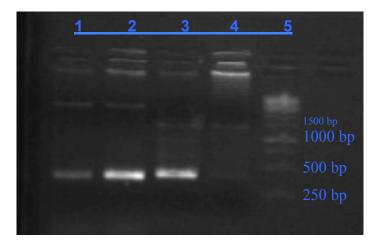
SDS PAGE of isolation fractions (3.2.10)

IV. RESULTS

4.1 RACE of Golden Delicious template

Plant cell line of *Malus x domestica* cultivar Golden Delicious was harvested and RNA was extracted as described above (3.2.2.1).

Concentration = $500 \mu g/ml$


Purity Ratio $(A_{260}/A_{280}) = 1.6$

Calculation of the purity ratio (A_{260}/A_{280}) provides an estimate of the purity of the preparation. A pure sample of RNA has an A_{260}/A_{280} ratio of 2.0 ± 0.1 , while deviations outside this range generally indicate contaminants. A low A_{260}/A_{280} usually indicates a protein contamination that carried over the RNA isolation (34). However, the protocols for reverse transcription do not emphasize the problem with protein contamination (22, 23), therefore the template was used in further research.

To obtain the complementary DNA library the extracted RNA was transcribed into cDNA, while a portion of the sample was digested with RNase H to test whether residual RNA interferes with downstream operations.

The DNA obtained in the reverse transcription using RT Supescript III (3.2.2.2.1, RNA digestion executed only for a portion of the reaction mixture) was used in PCR amplification with polymerase Phusion (described in 3.2.2.3.1). Gene specific primer 1 (GSP1, a forward primer) and oligo dT_{18} primer were used to amplify the target gene, while specific profilin primers were added to test the quality of isolated mRNA. Amplicons were analyzed with agarose electrophoresis.

The 2000 base pair-sized DNA fragments in positions 1 and 2 corresponding to Figure 3 were extracted from the gel. The extracted fragments were then used in the next PCR reaction.

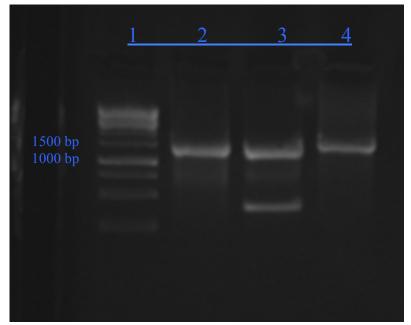
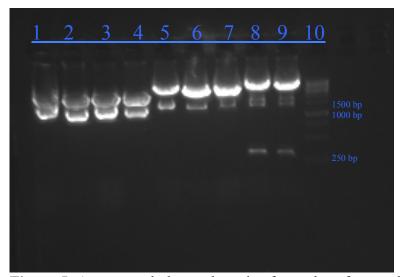


Figure 3: Agarose gel electrophoresis of PCR products amplified with Phusion polymerase. **(1)** PCR products amplified using RNase H treated cDNA template and primers GSP1, oligo dT18, and profilin (forward and reverse), **(2)** PCR products amplified using cDNA template (not treated with RNase H) and primers GSP1, profilin, and oligo dT18, **(3)** PCR products amplified using RNase H treated cDNA template, and primers GSP1 and oligo dT18, **(4)** PCR products amplified using cDNA (not treated with RNase H), and primers profilin and oligo dT18, **(5)** GeneRuler 1 kb DNA Ladder.

Note: A pipetting error has occurred with profilin and oligo dT_{18} primers as they were pipetted in all PCR tubes before the amplification. This explains multiple amplicons in the third and fourth position in Figure 3, along with DNA fragments corresponding to the size of profilin gene (\sim 400 bp) observed in all of the positions.

The extracted two samples and template cDNA not treated with RNase H were amplified with Dream *taq* polymerase (described in 3.2.2.2.2), which provided dT overhangs for ligation into pGEM-T Easy. In this PCR only the target gene was amplified with GSP1 and reverse oligo dT₁₈ primers. The amplicons were analyzed using agarose electrophoresis and the gel was photographed illuminated with UV light (Figure 4).

RESULTS


Figure 4: Agarose gel electrophoresis of PCR products amplified with Dream *Taq* polymerase. **(1)** GeneRuler 1k DNA Ladder, **(2)** PCR products amplified using the extracted 2000 base pair-sized DNA fragments (Fig. 3, lane 1) as the template and primers GSP1 and oligo dT18, **(3)** PCR products amplified using the extracted 2000 base pair-sized DNA fragments (Fig. 1, lane 2) as the template and primers GSP1 and oligo dT18, **(4)** PCR products amplified using the cDNA template (not treated with RNase H) and primers GSP1 and oligo dT18.

The ~1500 base pair-sized DNA fragments were extracted from all three samples and were ligated into pGEM T-Easy (described in 3.2.5.1) and *E.coli* strain XL1 Blue was transformed with the ligation mixture (described in 3.2.6.1) for plasmid multiplication and grown over night at 37 °C on LB agar plates containing ampicillin, IPTG, and X-Gal (described in 3.2.6.2). The next day, white colonies were picked (three from each plate, nine clones all together) and inoculated into 4 ml of LB medium with ampicillin and placed into rotary shaker-incubator at 37°C to grow overnight.

Plasmid DNA was isolated manually (described in 3.2.7.2). A 3 μ l sample from each isolated DNA plasmid was digested with *Eco*RI as described above (3.2.8.1) to test the transformation success. Products were separated with agarose electrophoresis and the gel photographed (Figure 5).

Plasmid DNA isolated from the clones on position 2, 5 and 9 according to the figure 5 (below) were sequenced using the sequencing primer T7, T7 term and specific sequencing primer as described above in section 3.1.2.5. Although only a portion of

the gene was apparently cloned (Figure 6), we successfully identified its additional sequence, that was previously unknown.

Figure 5: Agarose gel electrophoresis of samples of manually isolated plasmid DNA (pGEM-T Easy/insert) digested with *Eco*RI. **(1-3)** plasmid DNA isolated from clones transformed with pGEM-T Easy/insert-Fig.4-lane2, **(4-6)** plasmid DNA isolated from clones transformed with pGEM-T Easy/insert-Fig.4-lane3, **(7-9)** *Eco*RI digested plasmid DNA isolated from clones with transformed pGEM-T Easy /DNAfragment-position4-Figure4, **(10)** GeneRuler 1k DNA Ladder.

5'ATGGCGTTGAAGCGGGGGCTATCGAATGCGGGCCCCACAGGAACCGAGCCTCTGGATCTCGATTCCCTCTTGC GATTCTTATTTCTTTGCGCTTCTTGTCCCCTTGATTTTCTTCGTCGGCCGTGGCCTCCACATCTCCGATCATAGT GACATCTCATCTAGTCCTGGTGAAAAGAATCTGGATTGGAGACAAGGGCTGGCACTGCAACATGTGAAATCTCTTT AAACAATTTGTCGGCTTCATGGAAGGTCATTGGAGCAAATAATTCAGTTGTTACAGATTCTCAGATAAATTTGACT GCTGTAGATGCCAGACAAGAGACACCAAGGGTTAAAGTGGATGATCTTCAGATGATCACGCTCAACCACTTGATC CTGCAAAACTAGCCAGAAGGCAACTAAGAGAGAGAGACGTGAAAAGCGTGCAAATGAGTTGATACAATGGGATGA CGAATCAGTTGTAAGGCTTGAAACTGCAGCCATTGAGCGGTCCAAATCAGTTGATTCTGCAGTTCTAGGAAAATAC ${\tt AGTATTTGGAGGAAAGAAATGAGAAC} \underline{{\tt GAGAACTCTGATTCAACGGTGCGCTTGATACGGGACCAAATCATAATGG}}$ CAAGGGTCTACTTGAGTATTGCAAAGATGAAGAACAAGCTTGATCTGTTCCAACAACTACAAACTCGACTCACAGA ATCCCAGCGTGCAGTGGGAGAGGCAACTGCTGATGCGGATTTATCTCAAAGTGCACCGGAGAAAATAAAAGCTATG GGCCAAGTTCTTTCAAAAGCAAGAGAGCAACTGTATGATTGCAACCTGGTCACTGGGAAGCTGAGAGCAATGCTTC AGACTGCAGATGAACAAGTTCGGAGCTTGAAAAAGCAGAGCACATTTCTTAGTCAGTTAGCTGCCAAGACCATCC(AAATGGAATCCACTGCTTATCTATGCGCCTAACCATAGATTATTACCTCCTCCCCCTTGAGAAGAGAAAGTTCCCT TCGTCAACTCTACCGTCATAAATGCCAAGGATCCGTCAAAACACGTATTCCATCTTGTTACCGATAAGCTTAACTT ${\tt TGGAGCCATGAACATGTGGTTTTTATTGAATCCTCCTGGAAAAGCCACTATTCATGTTGAAAATGTTGACGAGTTT}$ AAGTGGCTAAACTCATCGTACGCCCCGCTTCAACGCCATATGTTTT-3

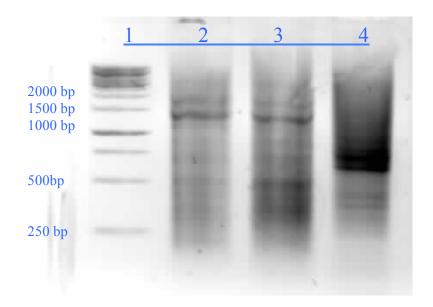
Figure 6: Gene sequence of putative glycosyltransferase in an apple (*Malus x domestica*) with additionally acquired gene sequence underlined. Sequences corresponding to primers MalusGTau and MalusGTin are marked with dotted underline and wawy underline, respectively.

From the newly acquired part of the gene sequence two new primers were designed located at nucleotides 1027-1047 (MalusGTau, marked with dotted underline in Figure 6) and 1102 and 1122 (MalusGTin, marked with wawy underline in Figure 6), which were used in the proceeding research.

RESULTS

4.2 RACE of Cox's Orange Pippin template

Cox's Orange Pippin cell line was induced with inactivated culture of bacteria *Erwinia amylovora* and harvested as described above (3.2.1), before the total RNA of the plant was extracted (described in 3.2.2.1). The change of the apple cultivar was necessary because of the microbial contamination of Golden Delicious cell line.

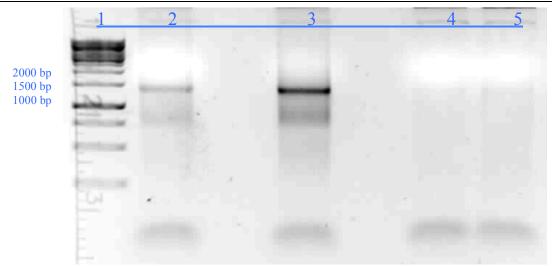

Concentration = 255 μ g/ml Purity Ratio (A₂₆₀/A₂₈₀) = 1.85

The sample of RNA with an A_{260}/A_{280} ratio of 2.0 ± 0.1 is considered pure (34) and the ratio here with fits this requirement.

Complementary DNA was obtained by transcribing the extracted RNA into DNA with RevertAid H Minus Reverse transcription kit (as described in 3.2.2.2.2) using 3'-CDS primer. The whole sample was digested with RNAase H and named Cox Mal Dna.

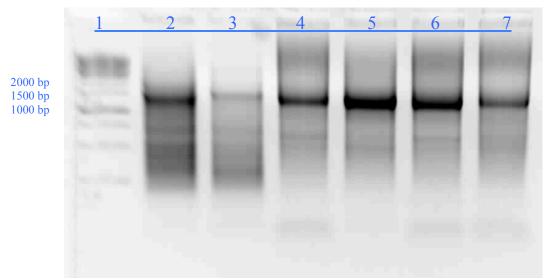
The cDNA template obtained in the reverse transcription (named Cox Mal Dna) was used in PCR amplification with polymerase Dream *Taq*. Profilin primers were used to establish the quality of isolated nucleic acids, while primer MalusGTau was used to amplify the target gene in two parallels using different amount of template.

The PCR products were then analyzed using agarose electrophoresis and the gel was photographed illuminated with the UV light (Figure 7). The ~1700 base pair-sized DNA fragments (Figure 7, lanes 2 and 3) were extracted from the gel (as described in 3.2.4). The extracted fragments were named Cox A and Cox B and then used in the next PCR reaction.


Figure 7: Agarose gel electrophoresis of PCR products amplified with Dream *Taq* polymerase. (1) GeneRuler 1kb DNA Ladder, (2) PCR products amplified using 2μl of cDNA template, and primers MalusGTau and Race Long, (3) PCR products amplified using 1μl of cDNA template, and primers MalusGTau and Race Long, (4) PCR products amplified using the 1μl of cDNA template, profilin primers and primer Race Long (pipetting error).

Note: Pipetting error explains the higher amount of smear and multiple DNA fragments in lane 4 (Fig. 7).

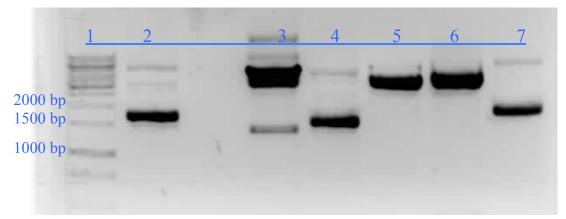
The isolated fragments (Cox A and Cox B) were amplified with Dream *Taq* (described in 3.2.2.3.1). Primers MalusGTin (forward) and Race Short (reverse) were used for this PCR. DMSO was added in an attempt to improve PCR amplification efficiency.


The samples were analyzed using agarose electrophoresis and the gel was photographed (Figure 8). ~1500 base pair-sized DNA fragment s (Figure 8, lanes 2 and 3) were extracted from the gel and named 1-Cox and 2-Cox from which 2-Cox was later ligated into pGEM-T Easy.

RESULTS

Figure 8: Agarose gel electrophoresis of PCR products amplified with Dream *Taq* polymerase. **(1)** GeneRuler 1 kb DNA Ladder, **(2)** PCR products amplified using Cox A template, and primers MalusGTin and Race Short, **(3)** PCR products amplified using Cox B template, and primers MalusGTin and Race Short, **(4)** PCR products amplified using Cox A template, and primers MalusGTin and Race Short with addition of DMSO, **(5)** PCR products amplified using Cox B template, and primers MalusGTin and Race Short with addition of DMSO.

Another PCR amplification with Dream *Taq* polymerase of the target gene was set up from template Cox Mal Dna, because of the suspicion, that the first two amplifications did not produce the desired length of DNA fragments. While similar mixture composition for PCR mixture was used, the template amount was doubled and DMSO was added. After this amplification 1 µl of each sample was taken and immediately used as template DNA in the next PCR using DMSO primers MalusGTin and Race Short. Both sets of PCR products were analyzed with agarose electrophoresis (Figure 9).


Figure 9: Agarose gel electrophoresis of PCR products amplified with Dream Taq polymerase. **(1)** GeneRuler 1 kb DNA Ladder, **(2)** PCR products amplified using Cox Mal DNA template, and primers MalusGTau and Race Long, **(3)** PCR products amplified using Cox Mal DNA template, and primers MalusGTau and Race Long with addition of DMSO, **(4)** PCR products amplified using 1 μl of PCR mixture in lane 2, and primers MalusGTin and Race Short, **(5)** PCR products amplified using 1 μl of PCR mixture in lane 3, and primers MalusGTin and Race Short with addition of DMSO, **(6)** PCR products amplified using 1 μl of PCR mixture in lane 2, and primers MalusGTin and Race Short, **(7)** PCR products amplified using 1 μl of PCR mixture in position 3, and primers MalusGTin and Race Short with addition of DMSO.

The ~1500 base pair-sized DNA fragment was extracted from the gel and named 6D Cox. The fragment was later ligated into pGEM T-Easy.

The extracted DNA fragments (2-Cox, 6D Cox) were ligated into pGEM T-Easy (described in 3.2.5.1) and *E. coli* strain XL1 Blue was transformed with ligation mixture for plasmid multiplication (described in 3.2.6.1). The cells were grown overnight at 37 °C on LB agar plates containing ampicillin, IPTG, and X-Gal (described in 3.2.6.2). Next day, three white colonies were picked from each plate (six clones all together) and inoculated into 4 ml of LB medium with ampicillin, placed into a rotary shaker-incubator at 37 °C and 170 rpm to grow overnight.

Plasmid DNA was isolated using GeneJET Plasmid Miniprep Kit (described in 3.2.7.1) and a 3 μ l sample from each sample was digested with *Eco*RI as described in the section 3.2.8.1 to test the transformation success, separated with agarose electrophoresis and photographed (Figure 10).

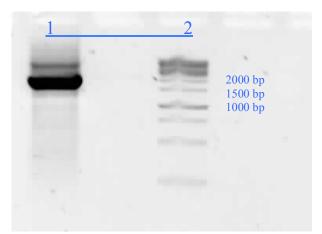
RESULTS

Figure 10: Agarose gel electrophoresis of plasmids pGEM-T Easy/2-COX and pGEM-T Easy/6DCOX digested with *Eco*RI. (1) GeneRuler 1kb DNA Ladder, (2-4) plasmid DNA from clones transformed with pGEM-T Easy/2-COX, (5-7) plasmid DNA from clones transformed with pGEM-T Easy/6DCOX.

Plasmid Dna isolated from clones transformed with pGem-T Easy/2-COX (figure 10) were sequenced using sequencing primers T7 and T7 term primers (Eurofins Operon MWG). The results completed the sequence of the target gene.

5'ATGGCGTTGAAGCGGGGGCTATCGAATGCGGGCCCCACAGGAACCGAGCCTCTGGATCTCGATTCCCTCTTGC GATTCTTATTTCTTTGCGCTTCTTGTCCCCTTGATTTTCTTCGTCGGCCGTGGCCTCCACATCTCCGATCATAGT GACATCTCATCTAGTCCTGGTGAAAAGAATCTGGATTGGAGACAAGGGCTGGCACTGCAACATGTGAAATCTCTTT ${\tt TCTCAAAAGAGGTCATTGATGTAATTTCAGCCAGCACGAATGACATGGGGCCTTTGAGCCTTGATTTCTTTAGGAA}$ AAACAATTTGTCGGCTTCATGGAAGGTCATTGGAGCAAATAATTCAGTTGTTACAGATTCTCAGATAAATTTGACT GCTGTAGATGCCAGACAAGAGACACCAAGGGTTAAAGTGGATGATCTTCAGATGATCACGCTCAACCACTTGATC CTGCAAAACTAGCCAGAAGGCAACTAAGAGAGAGAGACGTGAAAAGCGTGCAAATGAGTTGATACAATGGGATGA CGAATCAGTTGTAAGGCTTGAAACTGCAGCCATTGAGCGGTCCAAATCAGTTGATTCTGCAGTTCTAGGAAAATAC AGTATTTGGAGGAAAGAAATGAGAACGAGAACTCTGATTCAACGGTGCGCTTGATACGGGACCAAATCATAATGG CAAGGGTCTACTTGAGTATTGCAAAGATGAAGAACAAGCTTGATCTGTTCCAACAACTACAAACTCGACTCACAGA ATCCCAGCGTGCAGTGGGAGAGGCAACTGCTGATGCGGATTTATCTCAAAGTGCACCGGAGAAAATAAAAGCTATG ${\tt GGCCAAGTTCTTTCAAAAGCAAGAGAGCAACTGTATGATTGCAACCTGGTCACTGGGAAGCTGAGAGCAATGCTTC}$ AGACTGCAGATGAACAAGTTCGGAGCTTGAAAAAGCAGAGCACATTTCTTAGTCAGTTAGCTGCCAAGACCATCCC AAATGGAATCCACTGCTTATCTATGCGCCTAACCATAGATTATTACCTCCTCCCCCTTGAGAAGAGAAAGTTCCCT AGAAGTGAGAACTTGGAAAATCCAAATCTTTATCATTATGCTCTCTTCTCGGACAACGTCTTGGCTGCATCAGTCG ${\tt TCGTCAACTCTACCGTCATAAATGCCAAGGATCCGTCAAAACACGTATTCCATCTTGTTACCGATAAGCTTAACTT}$ TGGAGCCATGAACATGTGGTTTTTATTGAATCCTCCTGGAAAAGCCACTATTCATGTTGAAAATGTTGACGAGTTT AAGTGGCTAAACTCATCGTACGCCCCGCTTCAACGCCAGCTTGAGTCTGCTGCAATGAAAAACTATTATTTCAAGG $\tt CCGACCATACTACCACTCTCTCATCTGGTGCTTCTAATCTGAAGTACAGGAACCCGAAGTATCTCTCGATGCTTAA$ ${\tt TCATTTGAGGTTCTATCTTCCACAGGTTTATCCCAAGTTGGATAAGATCTTGTTTCTTGATGATGACATTGTTGTC}$ CAGAAAGACTTAACTGGATTGTGGGCAGTTGATCTACACGGAAAAGTAAATGGTGCAGTAGAAACCTGTGGTGAGA GCTTCCACCGGTTTGACAAGTACCTAAATTTCTCAAATCCTCATATTGCAAGAAACTTTGATCCAAACGCATGTGG ${\tt CAGAACATGAATGAAGACAGGACACTTTGGAAACTTGGAACATTACCTCCGGGGCTAATTACATTTTATGGGCTGA}$ ${\tt CACGTCCACTACAGAAGTCATGGCATGTACTTGGTTTAGGTTACAACCCAAGTCTTGATCGAGTTGAGATTGACAA}$ $\tt CGCAGCTGTTGTGCATTATAATGGCAACATGAAACCATGGCTGGAGTTGGCGATGACCAAGTATCGAGGATACTGG$ ACCAAGTACATTAAGTTTGATCATCCCTATCTTCGCAGCTGCAGCTAA-3'

Figure 11: Complete DNA sequence of target putative glycosyltransferase obtained in RACE


4.3 Construction of expression vector

Plasmid vector pET-52(+) was chosen as an expression vector for its combinations of restriction sites, which can provide sticky ends with enzymes in stock (*Kpn*I, *Sal*I, *Not*I, *Sac*I) and the ability to add His-Tag to its insert. Next, new primers (MalGT-kpnI_F, MalGT_salI_R) were designed with restriction sites for *Kpn*I and *Sal*I to produce sticky ends for ligation into expression vector pET-52(+) restricted with the same restriction sites.

E. coli strain XL1 Blue was transformed with the plasmid pET-52(+) for multiplication (described in 3.2.6.1) and spread on an LB agar plate with ampicillin and incubated at 37 °C overnight. Six colonies were picked, transferred into 4 ml LB liquid medium with ampicillin and placed into rotary shaker-incubator on 37°C to grow overnight. Plasmid DNA was manually isolated (described in 3.2.7.2) and named PlasmidExp.

The DNA template of Cox's Orange Pippin obtained in the reverse transcription (Cox Mal Dna) was used in PCR amplification with polymerase Dream *Taq*. Primers MalGT_kpnI_F and MalGT_salI_R were used to amplify the target gene.

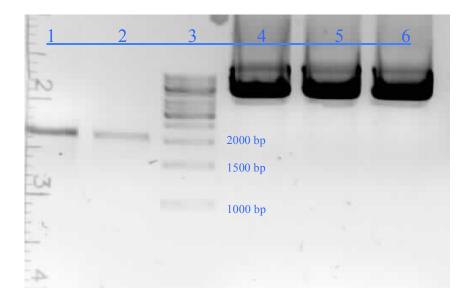

The PCR reaction mixture was analyzed using agarose electrophoresis and the gel was then photographed (Figure 12). The ~2500 base pair-sized DNA fragment (Fig. 12, lane 1) was extracted from the gel (described in 3.2.4) from the first position in figure 12 and named InsertExp.

Figure 12: Agarose gel electrophoresis of PCR product amplified with Dream *Taq* polymerase. (1) PCR products amplified using Cox Mal DNA template, and primers MalGT kpnI F and MalGT salI R, (2) GeneRuler 1kb DNA Ladder.

InsertExp and pET-52(+) were restricted with *Sal*I and *Kpn*I as described in section 3.2.8.2.1 and 3.2.8.2.2 following the guidelines from DoubleDigest tool described in section 3.2.8.2.The digested InsertExp and pET-52(+) were analyzed with agarose gel electrophoresis and the gel was photographed (Figure 13). All the fragments were extracted from the gel (described in 3.2.4).

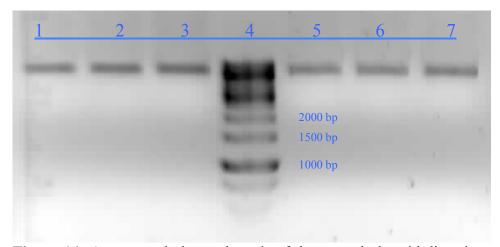
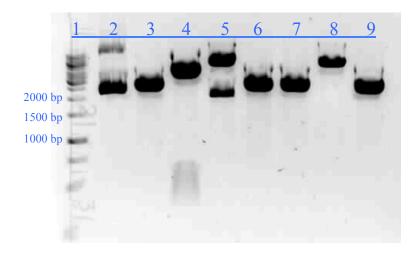

Note: The samples were pipetted into multiple gel wells because the digestion mixture volume was larger than a single well volume.

Figure 13: Agarose gel electrophoresis of (1-2) InsertExp and (4-6) PlasmidExp restricted with *Sal*I and *Kpn*I. (3) GeneRuler 1 kb DNA Ladder.


The extracted DNA fragments (digested pET-52(+) and InsertExp) were ligated together to produce the expression vector (described in 3.2.5.2). *E. coli* strain XL1 Blue was then transformed with the ligation mixture (described in 3.2.6.1) and grown on LB agar containing with ampicillin overnight. Six prominent colonies were picked and inoculated into 4 ml of LB medium with ampicillin and placed into a rotary shaker-incubator at 37 °C and 170 rpm to grow overnight. Plasmid DNA was isolated but harbored no inserts of appropriate size as judged from the analytical double digestion/agarose gel electrophoresis (not shown).

Upon failure to integrate the insert into pET-52(+), a second restriction of the plasmid pET-52(+) was set up increasing the restriction enzyme concentrations as described in 3.2.8.2.2. Once more the digested plasmid was subjected to agarose gel electrophoresis and the gel was photographed (Figure 14). Linearized plasmid was extracted from gel and all the fragments were combined into one sample.

Figure 14: Agarose gel electrophoresis of the second plasmid digestion of the pET-52(+). **(1-3)** and **(5-7)** Plasmid digestion mixture, **(4)** GeneRuler 1 kb DNA Ladder

Double digested pET-52(+) and the insert fragment (InsertExp) were ligated together to produce the expression vector (described in 3.2.5.2). *E. coli* strain XL1 Blue were transformed with the ligation mixture for plasmid multiplication and grown overnight at 37 °C on LB agar plate with ampicillin. The next day, eight prominent colonies were picked into 4 ml of LB medium with ampicillin and placed into a rotary shaker-incubator at 37 °C and 170 rpm to grow overnight. Plasmid DNA was isolated and a 3µl sample from each isolated plasmid was double digested with *Kpn*I and *Sal*I as described in the section 3.2.8.2.3 to test for successful insert integration (Figure 15).

Figure 15: Agarose gel electrophoresis of plasmids pET-52(+)/InsertExp digested with *Kpn*I and *Sal*I. (1) GeneRuler 1kb DNA Ladder, (2-9) digested plasmid pET-52(+).

The sample in lane 4 (Figure 15) was chosen for sequencing using primers T7 and T7 term (Eurofins Operon MWG) to confirm insert sequence. The insert of the expression vector was sequenced from both ends, however the entire gene sequence could not be verified (some 100 base pairs long segment in the middle of the gene was not covered). Therefore, we completed the sequence with the most reliable data from previous experiments. The resulting gene sequence is shown in Figure 16.

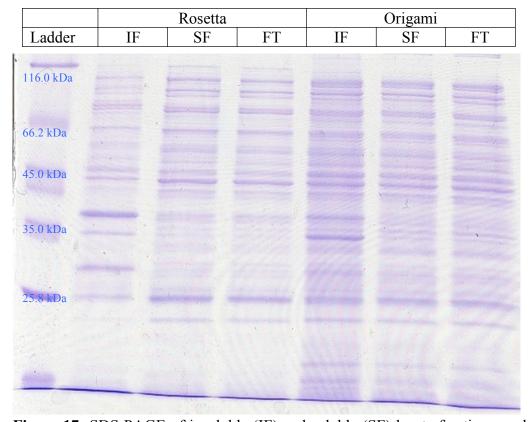

5'ATGGCGTTGAAGCGGGGGCTATCGAATGCCGGCCCCACAGGAACCGAGCTTCTGGATCTCGATTCCCTCTCGC GATTCTTATTTTCTTTGCGCTTCTCGTTCCCTTGACTTTCTTCCTCGACCGTGGCCTCCACATCTCTGATCATAGC GATATCTCATCTGGTCCTGGTGAAAAGAATCTGGATTGGAGAGAAAGGATGGCACTGCAACATGTCAAATCTCTTT ${\tt TCTCAAAAGAGGTCATTGATGTAATTTCAGCCAGCACGAATGACATGGGGCCTTTGAGCCTTAATTTCTTTAGGAA}$ AAACAATTTGTCAGCTTCTTGGAAAGTCATTGGAGAAAATAGTTCGGTTACAGATTCTCAGAAAGATTTGACTGCT GTAAATGCCAGACAAGAGACAGCTAGGGTTAAAGTGGATGATCTTCAGATGATCATGCTCAAGCTCTTGATCCTG CAAAACTAGCCAGAAGGCAACTAAGAGAGAAAAGGCGTGAAAAGCGTGCAAATGAGTTGGTACAACGGGATGACGA ATCAATTGTAAAGCTTGAAACTGCAGCCATTGAGCGGTCCAAATCAGTTGATTCTGCAGTTCTAGGAAAATACAGC ATTTGGAGGAAAGAAATGAGAACGAGAACTCTGATTCAACAGTGCGCTTGATACGGGACCAAATCATAATGGCAA GGGTCTACTTGAGTATTGCAAAGATGAAGAACAAGCTTGATCTGTTCCAACAACTACAGTCTCGACTTAAAGAATC $\tt CCAGCGTGCAGTGGGAGAGGCAACTGCTGATGCGGATTTATCTCAAAGTGCACCAGAGAAGATAAAAGCTATGGGC$ ${\tt CAAGTTCTTTCAAAAGCAAGAGAGCAACTGTATGATTGCAACCTGGTCACTGGGAAGCTGAGAGCAATGCTTCAGA}$ TCAACTCTACTGTCACAAATGCCAAGGATCCATCAAAGCACGTATTCCATCTTGTTACTGATAAGCTTAACTTTGG AGCCATGAATATGTGGTTTTTATTGAATCCTCCTGGAAAAGCCACTATTCATGTTGAAAATGTTGACGAGTTTAAG TGGCTAAACTCATCGTACTGCCCGGTTCTGCGTCAGCTTGAGTCTGCTGCAATGAAAAACTATTATTTCAAGGCCG ACCATCCTACCACTCTCTCTCTGGCGCTTCTAACCTGAAGTACAGGAACCCGAAGTATCTCTCAGTGCTTAATCA $\tt TTTGAGGTTCTATCTTCCACAGGTTTATCCCAAGGTGGATAAGATCTTGTTTCTTGATGATGACATTGTTGTCCAG$ AAAGACTTAACTGGATTGTGGGCTGTCGATCTACGCGGAAAAGTAAATGGTGCAGTGGAAACCTGTGGTGAGAGCT TCCACCGGTTTGACAAGTACCTAAACTTCTCAAATCCTCATATTGCAAGAAACTTTGATCCGAACGCATGTGGATG AACATGAATGAAGACAAGACACTTTGGAAACTTGGAACATTGCCTCCGGGGCTAATTACATTTTATGGGCTGACAC ATCCACTACAAAAGTCATGGCATGTGCTTGGTTTAGGTTACAACCCAAGTCTTGATCGAGCTGAGATTGACAGCGC GGCTGTTGTACATTATAATGGCAACATGAAACCATGGCTGGAGTTGGCGATGACAAAGTATCGAGGATACTGGACC AAGTACATTAAGTATGATCATCCCTATCTTCGCAGCTGCAGCTAA-3'

Figure 16: Complete predicted DNA sequence of target insert sequence in the expression vector pET-52(+)/InsertExp. The segment not sequenced is underlined.

4.4 Heterologous expression of putative glycosyl transferase

The expression plasmid was transformed into different *E. coli* strains (described in 3.2.6.1). The cultures were grown and induced as described in section 3.2.9.1, while the protein was isolated and purified using IMAC as described in 3.2.9.2. The fractions were analyzed using SDS PAGE as described 3.2.10.

4.4.1 SDS PAGE of Rosetta (DE3) and Origami (DE3)

Figure 17: SDS PAGE of insoluble (IF) and soluble (SF) lysate fractions, and flow-through from IMAC (FT) from the recombinant protein expressed in **Rosetta** (DE3) and **Origami** (DE3) expression strains.

RESULTS

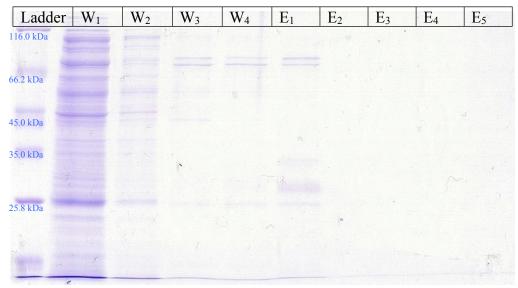
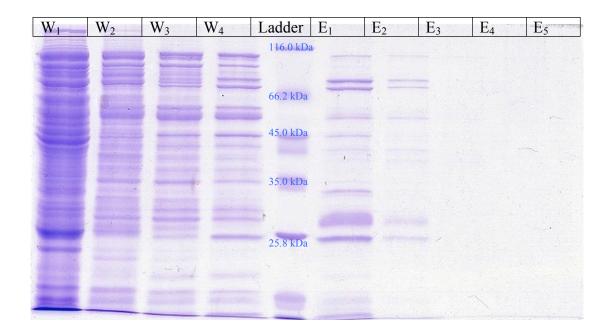
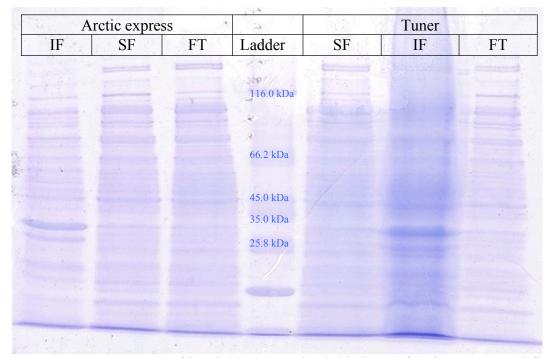




Figure 18: SDS PAGE of wash and elution fractions from IMAC for the recombinant protein expressed in **Rosetta** (DE3) expression strain.

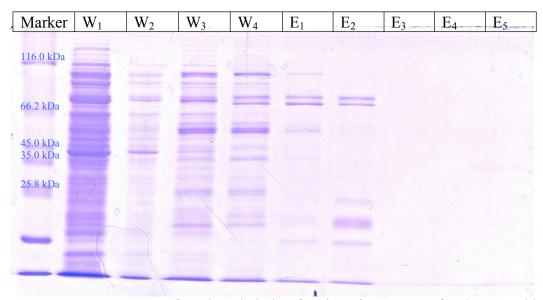


Figure 19: SDS PAGE of wash and elution fractions from IMAC for the recombinant protein expressed in **Origami** (DE3) expression strain.

4.4.2 SDS PAGE OF Arctic Express (DE3) and Tuner (DE3)

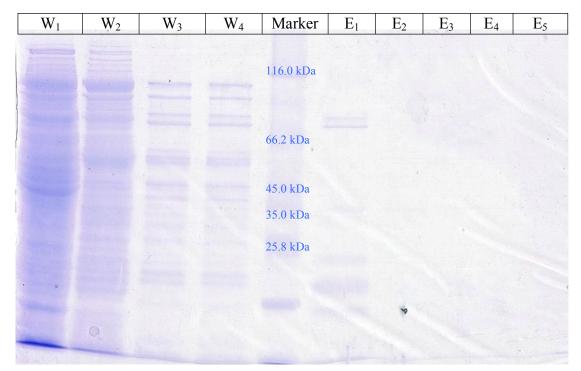


Figure 20: SDS PAGE of insoluble (IF) and soluble lysate fractions (SF), and flow-through from IMAC (FT) from the recombinant protein expressed in **Arctic express** (DE3) and **Tuner** (DE3) expression strain.

Figure 21: SDS PAGE of wash and elution fractions from IMAC for the recombinant protein expressed in **Arctic Express** (DE3) expression strain.

RESULTS

Figure 22: SDS PAGE of wash and elution fractions from IMAC for the recombinant protein expressed in **Tuner** (DE3) expression strain.

V. DISCUSSION

5.1 RACE Golden Delicious

The callus plant culture of Golden Delicious was harvested and RNA was extracted to obtain the target mRNA. This plant cell line was not inducted with inactivated *Erwinia amylovora* bacterial strain.

Profilin is a small ubiquitous protein sized 12–14 kDa, which is found in eukaryotic cells including plants, and it is expressed in all eukaryotic organisms studied thus far (35). Profilin protein has an essential role in eukaryotic cells with its role in cell proliferation and differentiation, growth, motility, and cytokinesis well documented (36). Hence, profilin-specific primers were used to test the quality of the isolated RNA material. The tested template obtained here (seen in Figure 3, ~400 base pair long amplicons) showed to be of good quality.

The apple profilin sequence was obtained online from European Bioinformatics Institute database ENA (European Nucleotide Arcive, CAD46561; Figure 23). The nucleotide sequence corresponding to primers is underlined, while the amplicon size should be around 372 base pairs.

Figure 23: Apple profilin sequence (37). The nucleotide sequence corresponding to profiling-specific primers is underlined.

The polymerase used in the second amplification was Dream *Taq*, which has a higher error rate than Phusion (38), however it simplified the ligation of the insert with pGEM-T Easy plasmid. Dream *Taq* generates PCR products with 3'-dA overhangs (25), while pGEM-T Easy is linearized with EcoRV restrictase and 3' terminal thymidine is added both ends. These single 3'-T overhangs at the insertion site of a

plasmid prevent recircularization of the vector and provide a compatible overhang for PCR products generated by in this case Dream *Taq* polymerase (27).

The PCR products sized ~1500 base pairs (Figure 4) were ligated with pGEM-T Easy and transformed into XL1 Blue. The chosen most prominent isolated vectors were sequenced, however only a partial sequence was established, indicating that the target gene is active and transcribed, but the turn-over rate of putative GT's mRNA is likely high (i.e., mRNA digestion rate is significant compared to the speed of transcription).

There were two templates used. The first template was digested using RNase H to eliminate the RNA left over from reverse transcription while the other template was not. The agarose gel pictures (Figures 4 and 5) show no significant effect of RNase H digestion, however the best sequencing results originated from the digested template, which points to benefits of RNA digestion.

The complete gene sequence could not be determined. Therefore, the plant cell lines were induced with inactivated *Erwinia amylovora* bacteria to induce apple's defense response. However, the information on the newly acquired segment of the target gene originating from the digested template was used to design new gene specific primers (MalusGTau, MalusGTin) to focus on the unknown part of the gene sequence.

5.2 RACE Cox's Orange Pippin

The cell line of Cox's Orange Pippin was used because of the microbial contamination of Golden Delicious cell line before we could induce and harvest it. The plant cell line was induced with inactivated culture of *Erwinia amylovora* to start up apples defense response and subsequently increase target glycosyltransferase expression. Because of the high invasive potential the culture of *Erwinia amylovora*, which was used for induction of apple's defense response, was inactivated.

The combination of 3'-CDS, Race long and Race short primers was used in this order enables nested PCR, which should provide more specific amplifications.

The plant material was harvested, total RNA isolated and transcribed into DNA using 3'-CDS primer followed by RNA digestion. The DNA template was amplified with Dream *Taq* using the new gene specific primer MalusGTau (forward) and Racelong primer (reverse), while quality was again tested with profilin primers (Figure 7, lane 4). The profilin band is not clearly visible, presumably because of the pipetting error as Race Long primer was pipetted into the reaction mix, which resulted in a higher number of amplicons amplified and increased the smear production. However, with a band showing at ~400 base pairs the template appeared to be of good quality.

The ~1800 base pairs sized DNA fragments were then used in the second amplification with Dream *Taq* where the combination of MalusGTau and Racelong primer were used, while DMSO was added in an effort to improve the results.

A second attempt to obtain the wanted DNA fragment was conducted. The two nested PCR amplification steps were repeated omitting the gel electrophoresis after the first PCR and using a small part of the PCR mixture immediately in the next PCR instead, while DMSO was also used to improve the quality of transcribing.

The results were two prominent around ~1500 base pairs long DNA fragments made both with the use of DMSO (Figure 9, lane 7) and without its use (Figure 8, lane 3). The sequence data obtained from the fragment where no DMSO was used lead to the complete gene sequence.

DMSO has been shown to facilitate DNA strand separation (useful especially in GC rich DNA sequences) disrupting the base pairing and therefore has been shown to improve PCR efficiency (39). However, this is not always the case. In retrospective the insert sequence was not especially GC-rich (around 44% GC content). Furthermore, DMSO inhibits DNA polymerase to a certain extent and an increase in enzyme quantity is recommended (24). With the amount of enzyme unchanged, DMSO addition could also result in poorer yield of the PCR product. This is seen in Figures 8 and 9, where in 3 out of 4 cases the use of DMSO resulted in more transparent and less distinct bands in the gel, while the sequencing result obtained from fragment where DMSO was used, were poor.

MALKRGLSNAGAHRNRASGSRFPLAILIFFALLVPLIFFVGRGLHISDHSDISSSPGEKNLDWRQGLALQHVKSLF SKEVIDVISASTNDMGPLSLDFFRKNNLSASWKVIGANNSVVTDSQINLTAVDARQETPRVKVDDSSDDHAQPLDP AKLARRQLREKRREKRANELIQWDDESVVRLETAAIERSKSVDSAVLGKYSIWRKENENENSDSTVRLIRDQIIMA RVYLSIAKMKNKLDLFQQLQTRLTESQRAVGEATADADLSQSAPEKIKAMGQVLSKAREQLYDCNLVTGKLRAMLQ TADEQVRSLKKQSTFLSQLAAKTIPNGIHCLSMRLTIDYYLLPLEKRKFPRSENLENPNLYHYALFSDNVLAASVV VNSTVINAKDPSKHVFHLVTDKLNFGAMNMWFLLNPPGKATIHVENVDEFKWLNSSYAPLQRQLESAAMKNYYFKA DHTTTLSSGASNLKYRNPKYLSMLNHLRFYLPQVYPKLDKILFLDDDIVVQKDLTGLWAVDLHGKVNGAVETCGES FHRFDKYLNFSNPHIARNFDPNACGWAYGMNMFDLKEWKKKDITGIYHKWQNMNEDRTLWKLGTLPPGLITFYGLT RPLQKSWHVLGLGYNPSLDRVEIDNAAVVHYNGNMKPWLELAMTKYRGYWTKYIKFDHPYLRSCS-

Figure 24: Predicted amino acid sequence of the putative glycosyltransferase on the basis of the nucleotide sequence of the cloned gene from Cox's Orange Pippin 3'RACE.

This enzyme is composed of 673 amino acids, while its theoretical isoelectric point (pI) should be 9.31 and its molecular weight 76753.83 (~76.8 kDa) predicted by ExPASy PeptideMass tool (40) on the basis of the sequence in Figure 24.

5.3 Construction of a vector with the complete target gene sequence

The ligation using "sticky" ends provides higher probability of the correct insertion of the DNA sequence and necessitates the primer design to incorporate different restriction sites into each primer. The plasmid pET-52(+) was chosen as an expression vector to introduce a His-tag at the C-terminus of the target insert, and *Kpn*I and *Sal*I were chosen as restriction enzymes.

The first attempt of transformation with restricted insert and plasmid was unsuccessful. This was likely due to insufficient plasmid restriction (resulting in significant proportion of initial parent plasmid containing no insert in the ligation mixture). Therefore the restriction was repeated under the same conditions. Second attempt of transforming expression plasmid pET-52(+) with target gene sequence into XL1 Blue for multiplication was more successful. The resulting expression plasmid was sequenced to verify the insert sequence.

The sequencing results did not yield the complete sequence of the inserted DNA fragment. The sequencing of 5' end and 3' end of the inserted sequence showed that both sequences contain approximately 950 base pairs of the inserted gene, which were accurately determined. The result is a gap of about 100 base pairs long. This gap was filled with the most reliable sequence data from previous sequencing experiments to obtain the best picture of the inserted sequence.

In this gap of \sim 100 base pairs it would be unlikely that the errors made by Dream Taq would alter the reading frame and result in expressing only a part of the sequence with the appearance of non-sense stop codons. Therefore, even without the complete sequence we can suppose that the insert was successfully integrated in the plasmid harboring our target protein sequence.

The plasmid sequence resembles with a very high percentage to the sequence determined by previous experiments (RACE sequence). However, we can see that it is already altered to some degree because of Dream *Taq*'s errors with multiple point mutations and one codon deletion Figure 25.

start RACE	ATGGCGTTGAAGCGGGGGCTATCGAATGCCGGCGCCCCACAGGAACCGAGCTTCTGGATCT ATGGCGTTGAAGCGGGGGCTATCGAATGCGGGCGCCCCACAGGAACCGAGCCTCTGGATCT ***********************************
start RACE	CGATTCCCTCTCGCGATTCTTATTTTCTTTGCGCTTCTCGTTCCCTTGACTTTCTTCCTC CGATTCCCTCTTGCGATTCTTATTTTCTTTGCGCTTCTTGTCCCCTTGATTTTCTTCGTC ********** **************************
start RACE	GACCGTGGCCTCCACATCTCTGATCATAGCGATATCTCATCTGGTCCTGGTGAAAAGAAT GGCCGTGGCCTCCACATCTCCGATCATAGTGACATCTCATCTAGTCCTGGTGAAAAGAAT * **********************************
start RACE	CTGGATTGGAGAAAGGATGGCACTGCAACATGTCAAATCTCTTTTCTCAAAAGAGGTC CTGGATTGGAGACAAGGGCTGGCACTGCAACATGTGAAATCTCTTTTCTCAAAAGAGGTC ***********************************
start RACE	ATTGATGTAATTTCAGCCAGCACGAATGACATGGGGCCTTTGAGCCTTAATTTCTTTAGG ATTGATGTAATTTCAGCCAGCACGAATGACATGGGGCCTTTGAGCCTTGATTTCTTTAGG *********************************
start RACE	AAAAACAATTTGTCAGCTTCTTGGAAAGTCATTGGAGAAAATAGTTCGGTTACAGAT AAAAACAATTTGTCGGCTTCATGGAAGGTCATTGGAGCAAATAATTCAGTTGTTACAGAT ***********************************
start RACE	TCTCAGAAAGATTTGACTGCTGTAAATGCCAGACAAGAGACAGCTAGGGTTAAAGTGGAT TCTCAGATAAATTTGACTGCTGTAGATGCCAGACAAGAGACACCAAGGGTTAAAGTGGAT ***********************
start RACE	GATTCTTCAGATGATCATGCTCAAGCTCTTGATCCTGCAAAACTAGCCAGAAGGCAACTA GATTCTTCAGATGATCACGCTCAACCACTTGATCCTGCAAAACTAGCCAGAAGGCAACTA *********************************
start RACE	AGAGAGAAAAGGCGTGAAAAGCGTGCAAATGAGTTGGTACAACGGGATGACGAATCAATT AGAGAGAAGAGA
start RACE	GTAAAGCTTGAAACTGCAGCCATTGAGCGGTCCAAATCAGTTGATTCTGCAGTTCTAGGA GTAAGGCTTGAAACTGCAGCCATTGAGCGGTCCAAATCAGTTGATTCTGCAGTTCTAGGA **********************************
start RACE	AAATACAGCATTTGGAGGAAAGAAAATGAGAACGAGAACTCTGATTCAACAGTGCGCTTG AAATACAGTATTTGGAGGAAAGAAAATGAGAACGAGAACTCTGATTCAACGGTGCGCTTG ****************************
start RACE	ATACGGGACCAAATCATAATGGCAAGGGTCTACTTGAGTATTGCAAAGATGAAGAACAAG ATACGGGACCAAATCATAATGGCAAGGGTCTACTTGAGTATTGCAAAGATGAAGAACAAG *****************************
start RACE	CTTGATCTGTTCCAACAACTACAGTCTCGACTTAAAGAATCCCAGCGTGCAGTGGGAGAG CTTGATCTGTTCCAACAACTACAAACTCGACTCACAGAATCCCAGCGTGCAGTGGGAGAG *****************************
start RACE	GCAACTGCTGATGCGGATTTATCTCAAAGTGCACCAGAGAAGATAAAAGCTATGGGCCAA GCAACTGCTGATGCGGATTTATCTCAAAGTGCACCGGAGAAAATAAAAGCTATGGGCCAA ********************************
start	GTTCTTTCAAAAGCAAGAGAGCAACTGTATGATTGCAACCTGGTCACTGGGAAGCTGAGA

DISCUSSION

RACE	GTTCTTTCAAAAGCAAGAGAGCAACTGTATGATTGCAACCTGGTCACTGGGAAGCTGAGA
start RACE	GCAATGCTTCAGACTGCAGATGAACAAGTTCGGAGCTTGAAAAAGCAGAGCACATTTCTT GCAATGCTTCAGACTGCAGATGAACAAGTTCGGAGCTTGAAAAAGCAGAGCACATTTCTT *****************************
start RACE	AGTCAGTTAGCTGCCAAGACCATCCCAAATGGAATCCACTGCTTATCTATGCGCCTAACC AGTCAGTTAGCTGCCAAGACCATCCCAAATGGAATCCACTGCTTATCTATGCGCCTAACC ********************************
start RACE	ATAGATTATTACCTCCTCCCCTTGAGAAGAGAAGTTCCCTAGAAGTGAGAACTTTGAA ATAGATTATTACCTCCTCCCCTTGAGAAGAGAA
start RACE	AATCCAAATCTTTATCATTATGCTCTCTTCTCAGACAATGTCTTGGCTGCATCAGTCGTC AATCCAAATCTTTATCATTATGCTCTCTTCTCGGACAACGTCTTGGCTGCATCAGTCGTC *********************************
start RACE	GTCAACTCTACTGTCACAAATGCCAAGGATCCATCAAAGCACGTATTCCATCTTGTTACT GTCAACTCTACCGTCATAAATGCCAAGGATCCGTCAAAACACGTATTCCATCTTGTTACC **********************************
start RACE	GATAAGCTTAACTTTGGAGCCATGAATATGTGGTTTTTATTGAATCCTCCTGGAAAAGCC GATAAGCTTAACTTTGGAGCCATGAACATGTGGTTTTTATTGAATCCTCCTGGAAAAGCC ******************************
start RACE	ACTATTCATGTTGAAAATGTTGACGAGTTTAAGTGGCTAAACTCATCGTACTGCCCGGTT ACTATTCATGTTGAAAATGTTGACGAGTTTAAGTGGCTAAACTCATCGTACGCCCCGCTT *****************************
start RACE	CTGCGTCAGCTTGAGTCTGCTGCAATGAAAAACTATTATTTCAAGGCCGACCATCCTACC CAACGCCAGCTTGAGTCTGCTGCAATGAAAAACTATTATTTCAAGGCCGACCATACTACC *:.** *********************************
start RACE	ACTCTCTCGTCTGGCGCTTCTAACCTGAAGTACAGGAACCCGAAGTATCTCTCAGTGCTT ACTCTCTCATCTGGTGCTTCTAATCTGAAGTACAGGAACCCGAAGTATCTCTCGATGCTT **********************************
start RACE	AATCATTTGAGGTTCTATCTTCCACAGGTTTATCCCAAGGTGGATAAGATCTTGTTTCTT AATCATTTGAGGTTCTATCTTCCACAGGTTTATCCCAAGTTGGATAAGATCTTGTTTCTT ****************************
start RACE	GATGATGACATTGTTGTCCAGAAAGACTTAACTGGATTGTGGGCTGTCGATCTACGCGGA GATGATGACATTGTTGTCCAGAAAGACTTAACTGGATTGTGGGCAGTTGATCTACACGGA ********************************
start RACE	AAAGTAAATGGTGCAGTGGAAACCTGTGGTGAGAGCTTCCACCGGTTTGACAAGTACCTA AAAGTAAATGGTGCAGTAGAAACCTGTGGTGAGAGCTTCCACCGGTTTGACAAGTACCTA *********************************
start RACE	AACTTCTCAAATCCTCATATTGCAAGAAACTTTGATCCGAACGCATGTGGATGGGCATAT AATTTCTCAAATCCTCATATTGCAAGAAACTTTGATCCAAACGCATGTGGATGGGCATAT ** ********************************
start RACE	GGGATGAACATGTTTGATCTTAAGGAGTGGAAGAAGAAGAATATTACTGGTATCTATC
start RACE	AAGTGGCAGAACATGAATGAAGACAAGACACTTTGGAAACTTGGAACATTGCCTCCGGGG AAGTGGCAGAACATGAATGAAGACAGGACACTTTGGAAACTTGGAACATTACCTCCGGGG ******************************
start RACE	CTAATTACATTTTATGGGCTGACACATCCACTACAAAAGTCATGGCATGTGCTTGGTTTA CTAATTACATTTTATGGGCTGACACGTCCACTACAGAAGTCATGGCATGTACTTGGTTTA *******************************
start RACE	GGTTACAACCCAAGTCTTGATCGAGCTGAGATTGACAGCGCGGCTGTTGTACATTATAAT GGTTACAACCCAAGTCTTGATCGAGTTGAGATTGACAACGCAGCTGTTGTGCATTATAAT ******************************
start RACE	GGCAACATGAAACCATGGCTGGAGTTGGCGATGACAAAGTATCGAGGATACTGGACCAAG GGCAACATGAAACCATGGCTGGAGTTGGCGATGACCAAGTATCGAGGATACTGGACCAAG *******************************
start RACE	TACATTAAGTATGATCATCCCTATCTTCGCAGCTGCAGCTAA TACATTAAGTTTGATCATCCCTATCTTCGCAGCTGCAGCTAA ***********************************

Figure 25: Alignment of RACE sequence (figure 11) and insert sequence of the expression vector pET-52(+)/InsertExp (figure 16) using CLUSTAL Omega (41).

DISCUSSION

The altered sequence could affect the enzyme activity and specificity of the target protein in the *E. coli* expression strains. While the expressed protein could be highly similar to the apple's native enzyme, the errors made by Dream Taq lower the possibility of expression of a functional protein. Therefore, the use of a polymerase with a lower error rate (for example Phusion) to amplify the insert in the future research would be reasonable. Alternatively, more clones can be produced and sequenced from which the clone containing the least modified insert would be chosen.

MALKRGLSNAGAHRNRASGSRFPLAILIFFALLVPLTFFLDRGLHISDHSDISSGPGEKNLDWRERMALQHVKSLF SKEVIDVISASTNDMGPLSLNFFRKNNLSASWKVIGENSSVTDSQKDLTAVNARQETARVKVDDSSDDHAQALDPA KLARRQLREKRREKRANELVQRDDESIVKLETAAIERSKSVDSAVLGKYSIWRKENENENSDSTVRLIRDQIIMAR VYLSIAKMKNKLDLFQQLQSRLKESQRAVGEATADADLSQSAPEKIKAMGQVLSKAREQLYDCNLVTGKLRAMLQT ADEQVRSLKKQSTFLSQLAAKTIPNGIHCLSMRLTIDYYLLPLEKRKFPRSENFENPNLYHYALFSDNVLAASVVV NSTVTNAKDPSKHVFHLVTDKLNFGAMNMWFLLNPPGKATIHVENVDEFKWLNSSYCPVLRQLESAAMKNYYFKAD HPTTLSSGASNLKYRNPKYLSVLNHLRFYLPQVYPKVDKILFLDDDIVVQKDLTGLWAVDLRGKVNGAVETCGESF HRFDKYLNFSNPHIARNFDPNACGWAYGMNMFDLKEWKKKDITGIYHKWQNMNEDKTLWKLGTLPPGLITFYGLTH PLQKSWHVLGLGYNPSLDRAEIDSAAVVHYNGNMKPWLELAMTKYRGYWTKYIKYDHPYLRSCS-

Figure 26: Predicted amino acid sequence of the target glycosyltransferase on the basis of the nucleotide sequence obtained from sequencing pET-52(+)/InsertExp.

This enzyme is composed of 672 amino acids, while its theoretical isoelectric point (pI) should be 9.33 and its molecular weight 76658.66 (~76.7 kDa) predicted by ExPASy PeptideMass tool (41) on the basis of the sequence in Figure 16.

5.4 UniProt BLAST

The DNA sequence of the target protein obtained in 3'-RACE (Race sequence) was blasted in the UniProt database as this should be least affected by Dream Taq's error rate. The BLAST results have shown that DNA sequence showed high similarity to a polygalacturonate 4-alpha-galacturonosyltransferase from Mouse-ear cress (*Arabidopsis thaliana*) with 76.7% of identities and 90.8% of positives for Race sequence. This means that our target protein is likely to possess polygalacturonate 4-alpha-galacturonosyltransferase enzyme activity, which is involved in pectin biosynthesis and catalyzes the transfer of galacturonic acid from uridine 5'-diphosphogalacturonic acid onto the pectic polysaccharide homogalacturonan (42).

 $1,4-\alpha$ -D-galacturonosyl(n)

Figure 27: The reaction catalyzed by polygalacturonate 4-alpha galacturonosyltransferase (42).

5.5 Protein expression and isolation

Four *E. coli* strain, each differently modified to enhance protein solubility, were transformed by the expression plasmid harboring the target insert. The plasmid should provide the polyhistidine tag to enable Ni affinity chromatography. Therefore, the expressed protein sized ~76.7 kDa should be located in the elution fractions when analyzed with SDS PAGE.

The SDS PAGE gels show two protein bands in the wash and first elution fractions roughly where our protein should appear, however, the assumption, that one of those two bands is our protein, is very unlikely. In retrospective a mistake was made when designing reverse primer as we have included a stop codon after the coding sequence. Therefore, the translation of polyhistidine tag, which would be located on C-end of the protein, is not possible.

The SDS PAGE gels in which IF, SF and FT fraction were analyzed also contain a protein band at this length (~77 kDa). However, this band does not significantly distinct itself from other bands in the gel as it was hoped, which suggests that the protein (if at all) is expressed relatively evenly throughout these fractions and a portion of it should be soluble.

Nevertheless, the plasmid did supply the Strep tag located at the N-terminus of the protein (28). Therefore, a different method of purification would be more appropriate (for example Strep-tag affinity purification), while a different reverse primer should be designed for future experiments.

VI. CONCLUSION

The DNA sequence obtained in these experiments from *Malus x domestica* cultivar Golden Delicious and Cox's Orange Pippin plant line suggests that there is a yet unidentified glycosyltransferase in the apple and according to the results of blasting in the Uniprot database, the protein is most likely to be polygalacturonate 4-alphagalacturonosyltransferase. The apple suspension culture needed to be induced with inactivated strain of *Erwinia amylovora* in order to obtain the whole gene sequence of the target protein, which suggests its involvement in apple's defense response. To produce the recombinant enzyme, the future research work requires different DNA polymerase with lower error rate to be used for PCR amplification of the target sequence and either a design of a new reverse primer (omitting the stop codon) or a different method of purification, e.g. an affinity chromatography based on the Strep Tag.

VII. REFERENCES:

- 1. Hu Y, Walker S: Remarkable Structural Similarities between Diverse Glycosyltransferases. Chemistry & Biology; (2002); 9(12): 1287–1296.
- 2. Schuman B, Alfaro JA, Evans SV: **Glycosyltransferase Structure and Function**. Topics in Current Chemistry; (2007); 272; 217–257.
- 3. Keegstra K, Raikhel N: **Plant glycosyltransferases**. Current Opinion in Plant Biology; (2001); 4(3); 219–224.
- 4. Vogt T, Jones P: Glycosyltransferases in plant natural product synthesis: characterization of a supergene family. Trends in Plant Science; (2000); 5(9): 380-386.
- 5. Dale W: **Plant Defense, First Edition**. Blackwell Publishing, New York, (2011): 1-19.
- 6. Somssich IE, Hahlbrock K: **Pathogen defense in plants a paradigm of biological complexity**. Trends in Plant Science; (1998); 3(3): 86-90.
- 7. Vanneste J: Fire Blight: The Disease and Its Causative Agent, Erwinia Amylovora. CABI Publishing; New York; (2000): 1-5.
- 8. Khan M A, Zhao Y F, Korban S S: Molecular Mechanisms of Pathogenesis and Resistance to the Bacterial Pathogen Erwinia amylovora, Causal Agent of Fire Blight Disease in Rosaceae. Plant Molecular Biology Reporter; (2012); 30(2): 247-270.
- 9. Coutinho PM, Deleury E, Davies GJ, Henrissat B: **An Evolving Hierarchical Family Classification for Glycosyltransferases**. Journal of Molecular biology; (2003); 328: 307–317.
- 10. Kolmodin LA, Birch DE: **PCR Cloning Protocols, Second Edition**. Methods in Molecular Biology; (2002); 192; Part I: 3-18.
- 11. Mülhardt C, EW Beese: **Molecular Biology and Genomics**. Academic Press; USA; (2007): 66-80.
- 12. Brown TA: Gene Cloning and DNA Analysis: An Introduction, Sixth Edition. Wiley-Blackwell; Hoboken, NJ, USA; (2010): 1-10.
- 13. Korban SS: **Apple EST** *Malus x domestica*. Unpublished work; dbEST, NCDB; (2005).

(http://www.ncbi.nlm.nih.gov/nucest/71825827?report=est)

- 14. Sambrook J, Russell DW: **Molecular Cloning: Laboratory manual, Third edition**. Cold Spring Harbor Laboratory Press; Cold Spring Harbor, New York, (2000).
- 15. XL1-Blue Competent Cells. Stratagene, 2004.
- 16. Novagen Competent cells User Protocol TB009 Rev. F 0104. Novagen, 2004.
- 17. ArcticExpressTM Competent Cells and ArcticExpressTM (DE3) Competent Cells Instruction Manual. Stratagene, 2006.
- 18. Linsmaier EM, Skoog F: **Organic growth factor requirements of tobacco tissue cultures**. Physiol Plantarum; (1965); 18: 100-127.
- 19. McPherson MJ, Moller SG: **PCR**. BIOS Scientific Publishers; Oxford, UK. (2000): 218-225.
- 20. Kühle S: cDNA-Klonierung einer Prenyltransferase aus der Arzneipflanze Hypericum perforatum. Doctoral dissertation, TU Braunschweig, Institut for Pharmazeutical Biology, (2009).
- 21. RNeasy Mini Handbook. Qiagen, 2001-2010.
- 22. SuperScript III First-Strand Synthesis System for RT-PCR. Manual, Invitrogen.
- 23. **RevertAid H Minus First Strand cDNA Synthesis Kit.** Manual, Fermentas, Thermo Fisher Scientific Inc., 2011.
- 24. **PhusionTM High-Fidelity DNA Polymerase.** Manual, Finnzymes, Thermo Fisher Scientific Inc., 2007.
- 25. **DreamTaq DNA Polymerase.** Product information, Fermentas, Thermo Fisher Scientific Inc., 2011.
- 26. **GeneJETTM GeneJET Gel Extraction Kit.** Product information, Fermentas Thermo Fisher Scientific Inc., 2011.
- 27. pGEM®-T and pGEM®-T Easy Vector Systems. Technical Manual, TM042, Promega.
- 28. pET-52b(+) Vector. Product information, Novagen. h
- 29. **pET System Manual**, 11th Edition. Novagen 2006.
- 30. **GeneJETTM Plasmid Miniprep.** Product Information Kit, Fermentas, Thermo Fisher Scientific Inc., 2011.

- 31. *EcoRI* product information. Fermentas, Thermo Fisher Scientific Inc., 2011.
- 32. **DoubleDigest**TM tool, Fermentas. http://www.fermentas.com/en/tools/doubledigest/
- 33. Ni-NTA Spin Kit Handbook, Second Edition. Qiagen, 2008.
- 34. Farrell RE Jr: **RNA Methodologies: A Laboratory Guide for Isolation and Characterization, Third Edition.** Elsevier Academic Press; USA; (2005):169-177.
- 35. Moens PDJ: Profilin, in MZ Atassi (ed.) Protein reviews Volume 8: Actin-Binding Proteins and Disease (200-217). Springer Science+Business Media Ltd.; USA; (2008).
- 36. Krishnan K, Moens: **PDJ Structure and functions of profilins**. Biophysical Reviews; (2009); 1:71–81.
- 37. **Apple profilin sequence** (CAD46561); ENA, EBI. http://www.ebi.ac.uk/ena/data/view/CAD46561
- 38. **Phusion® High-Fidelity DNA Polymerase**. Online information site, Fermentas, Thermo Fisher Scientific, 2011.
- 39. Frackman S, Kobs G, Simpson D and Storts D: **Betaine and DMSO: Enhancing Agents for PCR**. Promega Notes; (1998); 65, 27.
- 40. ExPASy PeptideMass tool.

(http://web.expasy.org/peptide mass/)

- 41. **CLUSTAL Omega (1.1.0)**. Multiple alignment tool. http://www.ebi.ac.uk/Tools/msa/clustalo/
- 42. Sterling JD, Atmodjo MA, Inwood SE, Kumar Kolli VS, Quigley HF, Hanh MG, Mohnen D: Functional identification of an Arabidopsis pectin biosynthetic homogalacturonan galacturonosyltransferase. Proceedings of the National Academy of Sciences of the United States of America; (2006); 103:5236-5241.