MATEJA STOPINŠEK

OPTIMIZACIJA ZDRAVLJENJA S CIKLOSPORINOM
V UNIVERZITETNEM KLINIČNEM CENTRU MARIBOR

OPTIMISATION OF CYCLOSPORINE TREATMENT
AT UNIVERSITY MEDICAL CENTRE MARIBOR

ENOVITI MAGISTRSKI ŠTIÐIJSKI PROGRAM FARMACIJA

Ljubljana, 2017
Magistrsko nalogo sem opravljala na Fakulteti za farmacijo pod mentorstvom prof. dr. Aleša Mrharja, mag. farm. in v Univerzitetnem kliničnem centru Maribor pod somentorstvom Polonce Drofenik, mag. farm., spec. klin. farm.

Zahvala
Najprej se želimo zahvaliti svoji somentorici Polonci Drofenik, mag. farm., spec. klin. farm. za ponudeno priložnost, zaupanje, vse potrpljenje in čas, ki ga je porabila zame ter seveda za vse znanje, ki mi ga je predala tekom dela. Iskrena hvala tudi mojemu mentorju prof. dr. Alešu Mrharju, mag. farm. za vodenje, strokovne nasvete ter vso pomoč pri nastajanju te naloge. Zahvaliti se želim tudi vsem ostalim zaposlenim v Centralni lekarni UKC Maribor, ki so me tako lepo sprejeli medse. Zahvala gre tudi Oddelku za laboratorijsko diagnostiko UKC Maribor za vso pomoč in sodelovanje.
Prav posebno zahvalo pa namenjam mami, očetu, moji Maši ter Mateju, ki so me skozi vsa leta študija spodbujali in verjeli vame.

Izjava
Izjavljam, da sem magistrsko nalogo samostojno izdelala pod vodstvom mentorja prof. dr. Aleša Mrharja, mag. farm. in somentorice Polonce Drofenik, mag. farm., spec. klin. farm.

Mateja Stopinšek
VSEBINA

POVZETEK ... i
ABSTRACT ... ii
SEZNAM OKRAJŠAV ... iii
1 UVOD .. 1
 1.1 CIKLOSPORIN ... 1
 1.2 FARMAKODINAMIKA CIKLOSPORINA .. 1
 1.3 FARMACEVTSKE OBLIKE IN BIOEKVIVALENCA .. 2
 1.4 FARMAKOKINETIKA CIKLOSPORINA ... 4
 1.5 TDM CIKLOSPORINA ... 5
 1.5.1 Odvzem vzorca za analizo .. 5
 1.5.2 Ostali parametri za spremljanje zdravljenja ... 6
 1.5.3 Farmakokinetični modeli .. 6
 1.6 INDIKACIJE, ODMERJANJE IN TERAPEVTSKA OBMOČJA .. 7
 1.7 NEŽELENI UČINKI, OPOZORILA IN PREVIDNOSTNI UKREPI .. 9
 1.8 INTERAKCIJE ... 11
 1.9 METODE DOLOČANJA CIKLOSPORINA ... 14
 1.10 OSNOVA FARMOKINETIČNEGA PROGRAMA DoseMe® ... 15
2 NAMEN DELA ... 17
3 MATERIALI IN METODE .. 18
 3.1 METODE KLINIČNIH RAZISKAV .. 18
 3.2 METODE KEMIJSKE ANALIZE ... 19
 3.3 METODE FARMAKOKINETIČNE ANALIZE ... 21
 3.4 METODE STATISTIČNE ANALIZE ... 25
4 REZULTATI .. 27
4.1 PRIMERI PACIENTOV... 27
4.2 NAPOVEDNA VREDNOST PROGRAMA DoseMe® 49
4.3 PRIMERJAVA REZULTATOV RAZLIČNIH ANALIZNIH METOD 50

5 RAZPRAVA.. 54
 5.1 PRIMERI PACIENTOV.. 54
 5.2 FARMAKOKINETIČNI PROGRAM DoseMe® .. 55
 5.3 PRIMERJAVA REZULTATOV RAZLIČNIH ANALIZNIH METOD 56
 5.4 OMEJITVE RAZISKAVE .. 57

6 SKLEP .. 58

7 LITERATURA... 59

PRILOGE .. 67
POVZETEK
S prospektivno raziskavo, ki smo jo izvedli, smo želeli preveriti uporabnost farmakokinetičnega programa DoseMe® kot pripomočka za TDM ciklosporina, nadalje smo želeli s pomočjo omenjenega programa optimizirati zdravljenje s ciklosporinom pri vključenih bolnikih, hkrati pa smo tekom študije želeli preveriti tudi primerljivost rezultatov določitve ciklosporina v Univerzitetnem kliničnem centru Maribor in Univerzitetnem kliničnem centru Ljubljana. V študijo je bilo vključenih 11 pacientov z avtoimunskimi boleznimi. Študija je potekala v UKC Maribor od začetka julija do konca decembra 2016. Pri vključenih pacientih smo spremljali koncentracije ciklosporina v krvi in s pomočjo programa DoseMe® optimizirali njihovo zdravljenje. Za primerjavo rezultatov določitve ciklosporina z različnimi metodami smo izvedli meritev koncentracije z metodo CMIA (chemiluminescent microparticle immunoassay) in CEDIA Plus (cloned enzyme donor immunoassay). Omejeno število vzorcev smo določili tudi s tekočinsko kromatografijo s tandemsko masno spektrometrijo.

Ključne besede: ciklosporin, TDM, DoseMe®, avtoimunske bolezni, analizne metode
ABSTRACT

Cyclosporine, also known as cyclosporine A, is a cyclic polypeptide with immunosuppressive action. It is a drug with narrow therapeutic index, multiple interactions and high intra- and inter-individual variability of pharmacokinetic parameters, that can lead to either subtherapeutic or toxic concentrations in patient’s blood. There are several criteria that a drug must meet to be a suitable candidate for therapeutic drug monitoring and cyclosporine fulfils all of them. For measuring cyclosporine concentration in blood samples, several assays are available. In general we can choose between immunoassays and chromatographic methods, which differ mostly in their specificity for the parent compound. Although chromatographic methods are known for their improved specificity, more than 80 % of laboratories all over the world still use immunoassays for determination of cyclosporine blood concentration.

We conducted a prospective study, in which we wanted to determine the applicability of a pharmacokinetic program DoseMe® for cyclosporine TDM and then use this program to optimize treatment of our cyclosporine patients. Furthermore, we wanted to find out whether the different methods used for cyclosporine measurement at University Medical Centre Maribor and University Medical Centre Ljubljana yield the same results. The total number of our patients was 11, with autoimmune diseases as the main indication for cyclosporine treatment. The study took place in UKC Maribor from July till December of 2016. We have been monitoring cyclosporine blood concentrations for every included patient and then optimizing their treatment, based on the measured value. We have also compared the results of cyclosporine determination by two different methods, CMIA (chemiluminescent microparticle immunoassay) and CEDIA Plus (cloned enzyme donor immunoassay). In addition, some samples were also determined by liquid chromatography-tandem mass spectrometry.

With our study we have demonstrated the usability of pharmacokinetic program DoseMe® as a tool for cyclosporine TDM. We have been properly monitoring and optimizing the treatment of every included patient. At the end, we have prepared a protocol for dosing and monitoring of cyclosporine treatment, which was successfully implemented into regular clinical practice. As for comparison of cyclosporine determination in UKC Maribor and UKC Ljubljana further studies should be performed.

Key words: cyclosporine, TDM, DoseMe®, autoimmune diseases, analytical methods
SEZNAM OKRAJŠAV

<table>
<thead>
<tr>
<th>OKRAJŠAVA</th>
<th>RAZLAGA</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACMIA</td>
<td>antibody conjugated magnetic immunoassay</td>
</tr>
<tr>
<td>AUC</td>
<td>površina pod krivuljo (area under the curve)</td>
</tr>
<tr>
<td>c0</td>
<td>koncentracija učinkovine v krvi ob času 0 (tik pred naslednjim odmerkom)</td>
</tr>
<tr>
<td>c2</td>
<td>koncentracija učinkovine v krvi 2 uri po odmerku</td>
</tr>
<tr>
<td>c_min</td>
<td>minimalna koncentracija učinkovine v krvi</td>
</tr>
<tr>
<td>c_max</td>
<td>maksimalna koncentracija učinkovine v krvi</td>
</tr>
<tr>
<td>CEDIA</td>
<td>cloned enzyme donor immunoassay</td>
</tr>
<tr>
<td>CMIA</td>
<td>chemiluminescent microparticle immunoassay</td>
</tr>
<tr>
<td>CYP3A4</td>
<td>citokrom P450 3A4</td>
</tr>
<tr>
<td>CYP3A5</td>
<td>citokrom P450 3A5</td>
</tr>
<tr>
<td>DNK</td>
<td>deoksiribonukleinska kislina</td>
</tr>
<tr>
<td>EDTA</td>
<td>etilendiamintetraocetna kislina</td>
</tr>
<tr>
<td>EMA</td>
<td>European Medicines Agency</td>
</tr>
<tr>
<td>EMIT</td>
<td>enzyme multiplied immunoassay technique</td>
</tr>
<tr>
<td>FDA</td>
<td>U.S. Food and Drug Administration</td>
</tr>
<tr>
<td>FPIA</td>
<td>fluorescence polarization immunoassay</td>
</tr>
<tr>
<td>H0</td>
<td>ničelna hipoteza</td>
</tr>
<tr>
<td>H_a</td>
<td>alternativna hipoteza</td>
</tr>
<tr>
<td>k_tr</td>
<td>hitrostna konstanta</td>
</tr>
<tr>
<td>konc.</td>
<td>koncentracija</td>
</tr>
<tr>
<td>LC-MS/MS</td>
<td>tekočinska kromatografija s tandemsko masno spektrometrijo</td>
</tr>
<tr>
<td>SLE</td>
<td>sistemski lupus eritematozus</td>
</tr>
<tr>
<td>t_lag</td>
<td>zakasnitveni čas</td>
</tr>
<tr>
<td>t_max</td>
<td>čas za dosego maksimalne koncentracije učinkovine v krvi</td>
</tr>
<tr>
<td>TDM</td>
<td>terapevtsko spremljanje koncentracij (therapeutic drug monitoring)</td>
</tr>
<tr>
<td>TM</td>
<td>telesna masa</td>
</tr>
<tr>
<td>TV</td>
<td>telesna višina</td>
</tr>
<tr>
<td>UKC</td>
<td>univerzitetni klinični center</td>
</tr>
<tr>
<td>ZU</td>
<td>zdravilna učinkovina</td>
</tr>
<tr>
<td>μ_1, μ_2</td>
<td>aritmetična sredina</td>
</tr>
</tbody>
</table>
1 UVOD

1.1 CIKLOSPORIN

Ciklosporin, znan tudi pod imenom ciklosporin A, je ciklični polipeptid, ki ga uvrščamo med imunosupresivne učinkovine. Sestavljen je iz enajstih aminokislin, je zelo lipofilen in le malo vodotopen, prisotnost N-metiliranih aminokislin pa mu omogoča zaščito pred razgradnjo v prebavnem traktu (1). Strukturna formula je prikazana na sliki 1.

Slika 1: Strukturna formula ciklosporina (1).

Ciklosporin je bil leta 1971 izoliran iz glive Tolypocladium inflatum Gams, v klinični praksi pa se je prvič pojavil leta 1983. Njegovo odkritje je pomenilo velik napredek na področju presaditve organov, kasneje pa so odkrili tudi njegove pozitivne učinke pri nekaterih avtoimunskih boleznih (2). Čeprav so ga z leti vse pogosteje zamenjevala druga zdravila, je v današnjem kliničnem okolju uporaba ciklosporina še vedno prisotna.

1.2 FARMAKODINAMIKA CIKLOSPORINA

citokinov, kar skupaj z znižano ekspresijo receptorjev za interleukin-2 zavira aktivacijo T
celic (1, 3, 4).
Glede na razpoložljive študije lahko rečemo, da ciklosporin deluje specifično na limfocite
ter da je njegovo delovanje reverzibilno. Za razliko od citostatičnih zdravil ciklosporin
nima splošnega citotoksičnega učinka, ne zavira hematopoeze in ne vpliva na funkcijo
fagocitov (5).

1.3 FARMACEVTSKE OBLIKE IN BIOEKVIVALENCA
Pri pregledu Centralne baze zdravil vidimo, da je ciklosporin na voljo v različnih
farmacevtskih oblikah tako za sistemsko kot tudi lokalno uporabo. Med farmacevtskimi
oblikami zasledimo kapljice za oko, koncentrat za raztopino za infundiranje, peroralno
raztopino ter mehke kapsule. Ker so vsi sodelujoči pacienti v naši študiji uporabljali mehke
kapsule, se tudi vsa teorija v nadaljevanju nanaša na to farmacevtsko obliko. Mehke
kapsule s ciklosporinom najdemo v Sloveniji pod imeni Sandimmun Neoral, Ciqorin ter
Ciklosporin Alkaloid-INT, vendar pa je slednjemu v času naše študije prenehala veljavnost
dovoljenja za promet (6). V vseh treh primerih gre za novejšo formulacijo ciklosporina, ki
so jo razvili zaradi slabih farmakokinetičnih lastnosti prvotnega izdelka.
Prva formulacija ciklosporina, ki se je pojavila na trgu, je bil Novartisov Sandimmune. Gre
za obliko, ki v telesu ob stiku z gastrointestinalnimi tekočinami tvori emulzijo tipa O/V in
za absorpcijo potrebuje dodatno emulzifikacijo, za kar je potrebna prisotnost žolčnih soli.
Posledica tega je velika inter- in intra- individualna variabilnost v absorpciji, s tem pa tudi
v sami izpostavljenosti ciklosporinu. Da bi izboljšali farmakokinetične lastnosti, so pri
Novartisu razvili novo formulacijo ciklosporina pod imenom Neoral. Ta novejša
formulacija v telesu tvori homogeno mikroemulzijo, katere absorpcija ni tako odvisna od
prisotnosti žolčnih soli. Prihod nove formulacije na trg je tako prinesel bolj konstantno in
predvidljivo farmakokinetiko, kar ima za posledico manjšo inter- in intra- individualno
variabilnost, manjšo odvisnost od sočasnega uživanja hrane in cirkadianega ritma ter
izboljšano korelacijo med c_{min} in AUC. Z novo formulacijo je dosežena tudi večja biološka
uporabnost, večji AUC, višji c_{max} in krašji t_{max}, medtem ko se dosežen c_{min} ni bistveno
spremenil (7, 8). Prej omenjene razlike in podobnosti so prikazane tudi na naslednji sliki
(Slika 2).
Slika 2: Primerjava koncentracijskih profilov, doseženih s formulacijama Sandimmune in Neoral (7).

Prav zaradi razlik v biološki uporabnosti ti dve formulaciji nista bioekvivalentni, kar pomeni, da med seboy nista zamenljivi in je torej pri prehodu iz ene na drugo obliko potrebna dodatna previdnost (3, 9, 10).

Zdravilo Neoral najdemo na slovenskem trgu pod imenom Sandimmun Neoral in je pri nas prisotno kot inovativno zdravilo. Generično zdravilo Ciqorin je bioekvivalentno zdravilu Sandimmun Neoral (11). Obe peroralni formulaciji (mehke kapsule), ki sta dostopni v Sloveniji, tako sodita med novejše formulacije ciklosporina z izboljšanimi farmakokinetičnimi lastnostmi. Kljub študijam, ki dokazujejo bioekvivalenco med prej omenjenima zdravila a, pa se na področju ciklosporinskih formulacij pojavlja vprašanje, ali so obstoječi postopki dovolj natančni, da lahko v praksi z gotovostjo govorimo o bioekvivalenci med različnimi formulacijami, ki vsebujejo ciklosporin. Glede na smernice se namreč raziskava izvede na zdravih prostovoljcih, pri čemer je potrebno spremljati AUC, c_{max} in t_{max} po enkratnem odmerku obeh zdravil, reference in testiranega zdravila. Prvi pomislek, ki se nam zastavi, je glede izvajanja študije na zdravih prostovoljcih, kar ne vključuje razlik v farmakokinetiki ciklosporina med zdravimi prostovoljci in bolniki. Razlike se ne pojavljajo samo med zdravimi in bolnimi, ampak so prisotne tudi med različnimi populacijami bolnikov. Pri presaditvah so tako ugotovili, da je variabilnost v absorpciji povezana s časom po presaditvi ter vrsto presajenega organa. Pomisleke pa vzbujajo tudi kriterij, ki določa, katere vrednost še pomeni bioekvivalenco. Za učinkovine z ozkim terapevtskim območjem je namreč razpon tega intervala lahko preširok (12, 13, 14).
Zaradi vseh omenjenih dvomov o dejanski bioekvivalenci se v praksi priporoča previdnost. Vsak prehod iz ene peroralne oblike ciklosporina na drugo mora biti izveden v kliničnem okolju, pod nadzorom zdravnikov. Potrebno je spremljanje koncentracije ciklosporina v krvi, pa tudi spremljanje ostalih kliničnih parametrov, s katerimi ocenjujemo varnost in učinkovitost zdravljenja s ciklosporinom (15, 16).

1.4 FARMAKOKINETIKA CIKLOSPORINA

Na farmakokinetiko ciklosporina razen izbrane formulacije vplivajo tudi pacientove lastnosti (spol, starost, telesna masa, telesna višina...), njegovo klinično stanje, sočasna uporaba drugih zdravil ter hrana. Vsi ti dejavniki lahko vplivajo na koncentracijo ciklosporina v krvi, s tem pa posledično tudi na sam učinek in varnost zdravljenja s ciklosporinom (17).

Farmakokinetične lastnosti, opisane v nadaljevanju, so značilne za mehke kapsule s ciklosporinom in veljajo za obe zdravili, ki sta prisotni na slovenskem trgu, Sandimmun Neoral in Ciqorin:

- **absorpcija**: Po peroralnem odmerjanju doseže ciklosporin najvišjo koncentracijo v krvi v 1 – 2 urah. Absolutna biološka uporabnost ciklosporina po peroralni aplikaciji je 20 – 50 %, pri čemer so ob sočasnem uživanju obroka z veliko vsebnostjo maščob opazili za približno 13 % znižanje AUC in 33 % znižanje c_{max}. Inter- in intra-individualna variabilnost doseženih vrednosti za AUC in c_{max} je približno 10 – 20 % (3). Pri bolnikih s presajenimi organi ima vpliv na absorpcijo ciklosporina tudi čas od presaditve. Takoj po presaditvah lahko tako opazimo večjo variabilnost v absorpciji pa tudi pojav zakasnjenih absorpcijskih profilov (18, 19, 20).

- **porazdelitev**: Ciklosporin se v precejšnjem obsegu porazdeljuje po telesu. Njegov volumen porazdelitve je 3 – 5 L/kg. V krvi je 33 – 47 % ciklosporina prisotnega v plazmi, 41 – 58 % v eritrocitih, 5 – 12 % v granulocitih in 4 – 9 % v limfocitih. Večina ciklosporina v plazmi je vezanega na beljakovine (90 %), večinoma na lipoproteine. Ciklosporin prehaja placento, zasledimo pa ga tudi v materinem mleku (3).

- **metabolizem**: Presnova ciklosporina poteka predvsem v jetrih in sicer v največji meri s CYP3A4, v manjšem obsegu pa se ciklosporin presnavlja tudi v gastrointestinalnem traktu in ledvicah. Glavne presnovne poti so monohidroksilacija, dihidroksilacija in N-demetilacija na različnih mestih v molekuli, kar ima za posledico nastanek več kot 25 različnih metabolitov (1). Vsi do sedaj odkriti metaboliti imajo ohranjeno peptidno
strukturno matične učinkovine, nekateri med njimi pa izkazujejo tudi šibko imunosupresivno delovanje (3). Poleg CYP3A4 imata pri presnovi in izločanju ciklosporina pomembno vlogo še CYP3A5 ter efluksni prenašalec P-glikoprotein (21).

• izločanje: Primarna pot izločanja ciklosporina je z žolčem, po tej poti se namreč izloči več kot 90 % zaužitega odmerka. Le 6 % peroralnega odmerka se izloči z urinom, od tega le 0,1 % v nesremenjeni obliki. To so tudi razlogi, zakaj okvara ledvic in dializa nimata velikega vpliva na izločanje ciklosporina, medtem ko lahko okvara jeter povzroči velike spremembe v izločanju (1, 3). Podatki za razpolovni čas ciklosporina precej varirajo, najpogosteje zasledimo razpon od 5 do 18 ur, s povprečno vrednostjo 8 ur, lahko pa se razpolovni čas podaljša tudi do 20,4 ure, kar zasledimo pri bolnikih s hudo jetrno boleznio. Pri pediatričnih bolnikih je razpolovni čas ciklosporina krajši, zaradi česar navadno potrebujejo pogostejše odmerjanje (3, 4).

1.5 TDM CIKLOSPORINA
Ciklosporin je učinkovina z ozkim terapevtskim območjem, številnimi interakcijami ter veliko inter- in intra- individualno variabilnostjo farmakokinetičnih parametrov, kar lahko privede do subterapevtskih ali toksičnih koncentracij v krvi bolnika (22). Zaradi naštetega je ciklosporin primerna učinkovina za TDM. Številne študije namreč kažejo, da lahko terapevtsko spremljanje koncentracij in individualno odmerjanje bistveno pripomoreta k varnosti in učinkovitosti zdravljenja s ciklosporinom (23, 24).

1.5.1 Odvzem vzorca za analizo
Ker se ciklosporin neenakomerno porazdeljuje med plazmo in krvnimi celicami, njegovo koncentracijo določamo v krvi z dodatkom antikoagulanta. Pri določanju koncentracije ciklosporina v krvi je pomemben čas odvzema vzorca glede na čas zadnje aplikacije zdravila. Informacije o tem, v kateri časovni točki bi bil odvzem vzorca najprimernejši, so različne. Najboljši pokazatelj izpostavljenosti ciklosporinu je določitev AUC_{0-12}, vendar pa je za uporabo v vsakdanji klinični praksi to preveč zahtevno. V literaturi se tako pojavljajo najrazličnejše strategije vzorčenja, ki poskušajo določiti tiste časovne točke, v katerih je korelacija z AUC_{0-12} najboljša. Opisani so vsi načini vzorčenja, od vzorčenja v eni točki pa tudi do algoritmov, ki vključujejo 2 – 5 časovnih točk (25). V klinični praksi se najpogosteje uporablja določitev ciklosporina v eni časovni točki. Najbolj pogosta je določitev minimalne koncentracije ciklosporina v krvi, c_0, torej koncentracije tik pred aplikacijo naslednjega odmerka. Prednosti pri določevanju c_0 so obširni literaturni podatki.
enostavnost pridobivanja vzorca, prav tako pa je tovrstno vzorčenje tudi patientu najbolj prijazno. Večina informacij o priporočenih terapevtskih območjih je podana prav za \(c_0 \). Pomanjkljivost določanja \(c_0 \), ki se omenja v zadnjem času, pa je slaba korelacija z AUC\(_{0-12} \) (26, 1). Zato je bilo predlagano določanje maksimalne koncentracije ciklosporina v krvi, \(c_2 \), torej koncentracije 2 uri po odmerku, ki naj bi imela boljšo korelacijo z AUC\(_{0-12} \) (27, 28, 29). Prednost naj bi bila tudi v manjšem deležu metabolitov v tej časovni točki in posledično manjši interferenci. Kljub navidezni prioriteti \(c_2 \) pa obstajajo tudi zadržki. Številne študije namreč niso uspele dokazati prednosti določanja \(c_2 \), celoten postopek pridobivanja vzorca je zahtevnejši, težava pa je tudi pri pridobivanju informacij o terapevtskih območjih, vezanih na \(c_2 \) (1). Tudi vpliv prehitrega ali zamujenega odvzema vzorca je tukaj bistveno večji (30). Zaradi velike variabilnosti v farmakokinetiki ciklosporina se pojavlja tudi vprašanje, ali z odvzemom vzorca 2 uri po odmerku res ujamemo maksimum pri vseh pacientih.

Pri bolj zapletenih primerih, kjer z določitvijo koncentracije ciklosporina zgolj v eni točki ne dobimo dovolj informacij, viri najpogosteje predlagajo dvotočkovni algoritem in sicer določitev \(c_0 \) in \(c_2 \) (31).

1.5.2 Ostali parametri za spremljanje zdravljenja

Razen rednega spremljanja koncentracij ciklosporina v krvi moramo pri zdravljenju s ciklosporinom spremljati še ledvično funkcijo, jetrno funkcijo ter vrednosti bilirubina, lipidov, kalija, magnezija in sečne kisline v serumu. Potrebne so tudi redne meritve krvnega tlaka (3, 32, 33).

1.5.3 Farmakokinetični modeli

Računalniški farmakokinetični programi so se uveljavili kot pomemben pomoček za izvajanje storitve TDM ter individualizacije odmerjanja. Pomembno je, da farmakokinetični modeli v ozadju tovrstnih programov kar najbolje opišijo farmakokinetiko izbrane učinkovine.

Za opis farmakokinetike ciklosporina se v literaturi pojavlja več farmakokinetičnih modelov. Zasledimo eno-, dvo- in tro- prostorne modele, ki se med seboj dodatno razlikujejo še v opisu kinetike absorpcijske faze. Ker se lahko pri bolnikih takoj po presaditvi pojavi tudi zakasnitev v absorpciji, nekateri modeli pri kinetiki absorpcijske faze upoštevajo zakasnitveni čas (\(t_{lag} \)), pri drugih modelih pa je absorpcijska faza opisana z Erlang distribucijo, ki naj bi najbolje opredelila to variabilno fazo (34 – 39).
Kot najustreznejši se je tako uveljavil dvoprostorni model, v katerem je absorpcija ciklosporina definirana z Erlangovo (gama) porazdelitvijo, eliminacija pa poteka s kinetiko 1. reda. Erlangovo porazdelitev kot absorpcijski model lahko najlažje opišemo z verigo identičnih prostorov, ki so nameščeni med mestom aplikacije in centralnim prostorom ter jih povezuje enaka hitrostna konstanta (k_tr). Optimalno število vmesnih prostorov je potrebno določiti za vsako učinkovino, v primeru ciklosporina se najpogosteje uporablja 5 ali 6 prostorov. Prednost uporabe Erlangove porazdelitve je velika fleksibilnost, zaradi česar je takšen model primeren za opis variabilne absorpcije ciklosporina (40 – 43). Shematični prikaz modela najdemo na spodnji sliki (Slika 3).

Slika 3: *Shematski prikaz farmakokinetičnega modela ciklosporina* (44).

Na podlagi podatkov, ki smo jih pridobili od podjetja Novartis, lahko sklepamo, da sta populacija bolnikov z avtoimunskimi boleznimi in bolnikov s presajenimi organi primerljivi glede na farmakokinetiko ciklosporina.

1.6 INDIKACIJE, ODMERJANJE IN TERAPEVTSKA OBMOČJA

Ciklosporin se zaradi svojega imunosupresivnega delovanja uspešno uporablja pri bolnikih po presaditvah čvrstih organov in kostnega mozga. Njegova naloga je preprečevanje ter zdravljenje zavrnitve presadkov in reakcije presadka proti prejemniku, koristne učinke ciklosporina pa so opazili tudi pri številnih boleznih avtoimunskega izvora.

Povzetek glavnih značilnosti zdravila Sandimmun Neoral kot indikacije za zdravljenje s ciklosporinom navaja presaditev čvrstih organov, presaditev kostnega mozga, endogeni uveitis, nefrotski sindrom, revmatoidni artritis, psoriasis in atopijski dermatitis. Pri indikacijah, ki niso povezane s presaditvijo, se ciklosporin uporabi v primeru hude oblike bolezni ali kadar običajno zdravljenje ni bilo uspešno (3). Razen vseh zgoraj naštetih indikacij se ciklosporin v praksi uporablja tudi pri nekaterih drugih avtoimunskih boleznih, pri katerih so opazili pozitiven vpliv ciklosporina na njihov potek in doseganje remisije.

Priporočeni odmerki za peroralno uporabo ciklosporina, ki jih najdemo v Povzetku glavnih značilnosti zdravila Sandimmun Neoral, so navedeni le kot usmeritev. Dnevni odmerek
Ciklosporina je potrebno jemati v dveh deljenih odmerkih, ki sta enakomerno razporejena preko dneva. Priporočeno je jemanje vedno ob istem času in z enakim razporedom glede na obroke. To je še posebej pomembno za bolnike po presaditvi (3). Okvirna priporočila za odmerjanje so podana v spodnji preglednici (Preglednica I), navedene so vse odobrene indikacije in tudi tiste, ki smo jih zasledili tekom naše študije.

Preglednica I: Priporočila za odmerjanje ciklosporina (3).

<table>
<thead>
<tr>
<th>INDIKACIJA</th>
<th>ODMERJANJE (v dveh deljenih odmerkih)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>začetno</td>
</tr>
<tr>
<td>presaditev ledvice</td>
<td>10 – 15 mg/kg/dan</td>
</tr>
<tr>
<td>presaditev jeter</td>
<td></td>
</tr>
<tr>
<td>presaditev srca</td>
<td></td>
</tr>
<tr>
<td>presaditev pljuč</td>
<td></td>
</tr>
<tr>
<td>presaditev trebušne slinavke</td>
<td>i.v. 3 – 5 mg/kg/dan</td>
</tr>
<tr>
<td>presaditev kostnega moza</td>
<td>per os 12,5 – 15 mg/kg/dan</td>
</tr>
<tr>
<td>polimiozitis in dermatomiozitis</td>
<td>največ 5 mg/kg/dan</td>
</tr>
<tr>
<td>SLE</td>
<td></td>
</tr>
<tr>
<td>Behcetova bolezen</td>
<td></td>
</tr>
<tr>
<td>revmatoidni artritis</td>
<td></td>
</tr>
<tr>
<td>glomerulonefritis</td>
<td></td>
</tr>
<tr>
<td>nefrotski sindrom</td>
<td></td>
</tr>
<tr>
<td>aplastična anemija</td>
<td></td>
</tr>
<tr>
<td>endogeni uveitis</td>
<td></td>
</tr>
<tr>
<td>psoriaza</td>
<td></td>
</tr>
<tr>
<td>atopijski dermatitis</td>
<td></td>
</tr>
</tbody>
</table>

Pri presaditvah je z zdravljenjem potrebno začeti na dan pred posegom (priporočen začetni odmerek) ter z enakim odmerkom nadaljevati še 1 – 2 tedna po operaciji. Odmerek je nato potrebno postopno zniževati do priporočenega vzdrževalnega odmerka in ob tem upoštevati koncentracijo ciklosporina v krvi. Kadar se ciklosporin uporablja skupaj z drugimi imunosupresivnimi zdravili, je možno uporabljati nižje odmerke. Trajanje zdravljenja je različno in odvisno od same bolezni ter od zdravstvenega stanja pacienta. Pri indikacijah, ki niso povezane s presaditvijo, je v primeru nezadostne učinkovitosti ali pojava neželenih učinkov po določenem času zdravljenje s ciklosporinom potrebno prekiniti (3).

Kot že prej omenjeno, nam je pri spremljanju zdravljenja s ciklosporinom v veliko pomoč storitev TDM. Da pa lahko v praksi izvajamo TDM ciklosporina, je nujno, da imamo
opredeljena ustrezna terapevtska območja, ki nam služijo kot usmeritev za prilagajanje odmerkov. Pomembno je, da se koncentracija ciklosporina v krvi nahaja znotraj priporočenih območij. Vrednosti, nižje od spodnje meje terapevtskega območja, predstavljajo tveganje za neučinkovitost zdravljenja, vrednosti nad zgornjo mejo območja pa pomenijo nevarnost za pojav toksičnosti. Priporočena terapevtska območja, zbrana s pomočjo različnih študij in informacij strokovnjakov s tega področja, so podana v preglednici II. Podana so priporočena območja za c_0 in c_2.

Preglednica II: Priporočena terapevtska območja za zdravljenje s ciklosporinom (1, 45 – 62).

<table>
<thead>
<tr>
<th>INDIKACIJA</th>
<th>TERAPEVTSKO OBMOČJE</th>
<th>C₀ [µg/L]</th>
<th>C₂ [µg/L]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>začetno</td>
<td>vzdrževalno</td>
<td>začetno</td>
</tr>
<tr>
<td>presaditev ledvice</td>
<td>150 – 250</td>
<td>< 150</td>
<td>1000 – 1400</td>
</tr>
<tr>
<td>presaditev jeter</td>
<td>250 – 350</td>
<td>< 150</td>
<td>800 – 1200</td>
</tr>
<tr>
<td>presaditev srca</td>
<td>250 – 350</td>
<td>< 150</td>
<td>800 – 1400</td>
</tr>
<tr>
<td>presaditev pljuč</td>
<td>175 – 225</td>
<td>125 – 175</td>
<td></td>
</tr>
<tr>
<td>presaditev trebušne slinavke</td>
<td>150 – 250</td>
<td>< 150</td>
<td></td>
</tr>
<tr>
<td>presaditev kostnega mozga</td>
<td>200 – 400</td>
<td></td>
<td></td>
</tr>
<tr>
<td>avtoimunske bolezni</td>
<td>50 – 150</td>
<td></td>
<td></td>
</tr>
<tr>
<td>polimiozitis in dermatomiozitis</td>
<td>150</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SLE</td>
<td>80 – 150</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Behcetova bolezen</td>
<td>> 50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>revmatoidni artritis</td>
<td>50 – 150</td>
<td></td>
<td></td>
</tr>
<tr>
<td>glomerulonefritis</td>
<td>125 – 200</td>
<td></td>
<td></td>
</tr>
<tr>
<td>nefrotski sindrom</td>
<td>80 – 120</td>
<td></td>
<td></td>
</tr>
<tr>
<td>aplastična anemija</td>
<td>150 – 200</td>
<td></td>
<td></td>
</tr>
<tr>
<td>endogeni uveitis</td>
<td>80 – 150</td>
<td></td>
<td></td>
</tr>
<tr>
<td>psoriaza</td>
<td>< 200</td>
<td></td>
<td></td>
</tr>
<tr>
<td>atopijski dermatitis</td>
<td>ni spec. vrednosti</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1.7 NEŽELENI UČINKI, OPOZORILA IN PREVIDNOSTNI UKREPI

Spremljanje koncentracij ciklosporina v krvi je zelo pomembno, saj koncentracije nad zgornjo mejo priporočenih terapevtskih območij predstavljajo tveganje za ledvično okvaro, koncentracije pod spodnjo mejo pa lahko pomenijo neučinkovitost zdravljenja pri bolnikih z avtoimunskimi boleznimi ali zavrnitev presajenega organa pri bolnikih po presaditvah.

1 Prof. dr. Pierre Marquet in Prof. dr. Franck Saint-Marcoux (University of Limoges, Limoges University Hospital) ter Dr. Harald Ertl (Labor Lademannbogen, Hamburg).
Kljub definiranim terapevtskim območjem pa se lahko neželeni učinki pojavijo tudi kadar so koncentracije znotraj priporočenih območij. Neželeni učinki, ki se lahko pojavijo pri zdravljenju s ciklosporinom, prizadenejo različne organske sisteme. Verjetnost za pojav neželenih učinkov narašča s trajanjem zdravljenja, kar je tudi razlog, zakaj ljudje zdravlje s ciklosporinom sčasoma slabše prenašajo. Številni neželeni učinki ciklosporina so povezani z odmerkom in jih torej lahko odpravimo ali pa vsaj ublažimo z zmanjšanjem odmerka. Med najpogostejšimi neželenimi učinki, ki se lahko pojavijo ob jemanju ciklosporina, so: tremor, glavobol, bolečine v mišicah, mišični krči, slabost, bruhanje, diareja, hiperplazija dlesni, hirzutizem, hipertenzija, hiperlipidemija, hiperglikemija, hiperurikemija, hiperkaliemija, hipomagneziemija, levkopenija, okvara jeter ter ledvična okvara (3, 32).

Razen vseh zgoraj naštetih neželenih učinkov je pri zdravljenju s ciklosporinom potrebna previdnost tudi zaradi povečanega tveganja za razvoj različnih bakterijskih, glivičnih, parazitskih in virusnih okužb, najpogosteje z oportunističnimi patogeni. Prav tako je njegovo imunosupresivno delovanje odgovorno tudi za povečano tveganje za razvoj limfoma ter drugih malignih bolezni, še posebej malignih bolezni kože. To povečano tveganje je povezano s trajanjem zdravljenja, ne pa tudi z uporabo določenega zdravila. Poskrbeti je potrebno za preventivne in terapevtske ukrepe, še posebej pri pacientih na dolgotrajnem imunosupresivnem zdravljenju z več imunosupresiv (3). Zaradi vseh morebitnih tveganj je potrebno zdravljenje s ciklosporinom nadzorovati in bolnike ustrezno spremljati. Še posebna previdnost je potrebna pri bolnikih, ki imajo katero izmed prej omenjenih bolezni prisotna v anamnezi že pred pričetkom zdravljenja s ciklosporinom.

Opaziti je potrebno tudi na uživanje ciklosporina pri nosečnicah in doječih materah. Ciklosporin je relativno varna učinkovina in eden redkih imunosupresivov, ki jih je dovoljeno uporabljati med nosečnostjo, vendar je ob njegovi uporabi vseeno potrebna previdnost. Trenutno ne obstajajo nobeni dokazi o teratogenosti ciklosporina, opisani pa so bili primeri zaostajanja razvoja v maternici, prezgodnjih rojstev pa tudi zapleti pri materi, kot sta hipertenzija in preeklampsija. Potrebno je omeniti, da so ti zapleti lahko tudi posledica osnovne bolezni in ne nujno delovanja ciklosporina. Dodatno je pri uživanju ciklosporina med nosečnostjo potrebno spremljati koncentracije v krvi, saj pride do
povečanega metabolizma in zato je pogosto potrebno prilagajanje odmerka. Razen tega da prehaja placentu, prehaja ciklosporin tudi v materino mleko (33, 63, 64).

1.8 INTERAKCIJE

Ena izmed lastnosti ciklosporina je veliko število interakcij, pri čemer prevladujejo interakcije z drugimi učinkovinami, zasledimo pa tudi interakcije med ciklosporinom in določeno hrano. Interakcije ciklosporina z drugimi učinkovinami lahko razdelimo na farmakokinetične in farmakodinamične (65). Razdelitev učinkovin, ki vstopajo v interakcijo s ciklosporinom, je prikazana v preglednici III.

Preglednica III: Pregled učinkovin, ki vstopajo v interakcijo s ciklosporinom (3, 32, 33).

Wind the table.

<table>
<thead>
<tr>
<th>FARMAKOKINETIČNE INTERAKCIJE</th>
<th>FARMAKODINAMIČNE INTERAKCIJE</th>
</tr>
</thead>
<tbody>
<tr>
<td>↓ konc. ciklosporina</td>
<td>↓ konc. ciklosporina</td>
</tr>
<tr>
<td></td>
<td>↑ konc. ciklosporina</td>
</tr>
<tr>
<td>barbiturati</td>
<td>alopurinol</td>
</tr>
<tr>
<td>bosentan</td>
<td>amiodaron</td>
</tr>
<tr>
<td>ciklofosfamid</td>
<td>azitromicin</td>
</tr>
<tr>
<td>fenitoin</td>
<td>danazol</td>
</tr>
<tr>
<td>fibrati</td>
<td>diltiazem</td>
</tr>
<tr>
<td>karbamazepin</td>
<td>eritromicin</td>
</tr>
<tr>
<td>modafinil</td>
<td>flukonazol</td>
</tr>
<tr>
<td>nafcilin</td>
<td>glipizid</td>
</tr>
<tr>
<td>okskarbazepin</td>
<td>holna kislina</td>
</tr>
<tr>
<td>oktreotid</td>
<td>imatinib</td>
</tr>
<tr>
<td>orlistat</td>
<td>itrakonazol</td>
</tr>
<tr>
<td>probukol</td>
<td>karvediol</td>
</tr>
<tr>
<td>rifampicin</td>
<td>ketokonazol</td>
</tr>
<tr>
<td>sulfadimidin i.v.</td>
<td>klaritromicin</td>
</tr>
<tr>
<td>sulfinpirazon</td>
<td>klorokin</td>
</tr>
<tr>
<td>terbinafin</td>
<td>kolhcin</td>
</tr>
<tr>
<td>tiklopidin</td>
<td>kontraceptivi (hormonski)</td>
</tr>
<tr>
<td></td>
<td>lekanidipin</td>
</tr>
<tr>
<td></td>
<td>metilprednizolon (visoki odmerki)</td>
</tr>
<tr>
<td></td>
<td>metoklopramid</td>
</tr>
<tr>
<td></td>
<td>mifepriston</td>
</tr>
<tr>
<td></td>
<td>nefazodon</td>
</tr>
<tr>
<td></td>
<td>nikardipin</td>
</tr>
<tr>
<td></td>
<td>ranolazin</td>
</tr>
<tr>
<td></td>
<td>verapamil</td>
</tr>
<tr>
<td></td>
<td>vorikonazol</td>
</tr>
<tr>
<td></td>
<td>zaviralci proteaze</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
V prvih dveh stolpcih so naštete učinkovine, katerih sočasna uporaba vpliva na farmakokinetiko ciklosporina. Gre za učinkovine, ki lahko zvišajo ali znižajo koncentracijo ciklosporina v krvi, običajno tako, da zavirajo ali inducirajo encime, ki sodelujejo pri presnovi ciklosporina, predvsem encim CYP3A4 (3). Vsaka nenačrtovana sprememba koncentracije ciklosporina v krvi predstavlja tveganje za neučinkovitost zadrženja ali za pojav toksičnosti, zato je ob sočasni uporabi tovrstnih učinkovin potrebno spremljanje koncentracije ciklosporina v krvi. Razen metilprednizolona moramo biti pozorni tudi pri ostalih kortikosteroidih, saj lahko ob sočasni uporabi s ciklosporinom pride do povišanja koncentracij enega ali drugega, lahko pa tudi obeh (66).

Zadnji stolpec pa predstavlja učinkovine, ki lahko ob sočasni uporabi s ciklosporinom povzročijo sinergistično toksično delovanje na ledvice, zato je potrebno redno spremljanje ledvične funkcije in ustrezen prilagajanje odmerka. Gre torej za farmakodinamične interakcije, ki predstavljajo povečano tveganje za okvaro ledvične funkcije. V tej skupini je potrebno omeniti takrolimus, čigar sočasni uporabi s ciklosporinom se je potrebno izogibati ne samo zaradi potencialnega toksičnega delovanja na ledvice, pač pa tudi zaradi
tveganja za farmakokinetične interakcije, ki lahko privedejo do povišanih koncentracij enega ali drugega (3).

Pri interakcijah ciklosporina z drugimi učinkovinami moramo omeniti še cepiva in zdravila, ki varčujejo s kalijem (s kalijem varčni diuretiki, zaviralci angiotenzinske konvertaze, antagonisti angiotenzinskih receptorjev) ali pa vsebujejo kalij. Eden izmed možnih neželenih učinkov ciklosporina je hiperkaliemija, zato je potrebna previdnost pri sočasnem uporabi zdravil, ki varčujejo s kalijem ali zdravil, ki vsebujejo kalij, saj lahko pride do pomembnega zvišanja koncentracije kalija v serumu. Glede cepiv pa je potrebno vedeti, da bo med zdravljenjem s ciklosporinom cepljenje manj učinkovito (3).

Razen interakcij z drugimi učinkovinami zasledimo pri ciklosporinu tudi interakcije s hrano in nekaterimi prehranskimi dopolnili oziroma izdelki za samozdravljenje. Zelo pomembno je, da bolniki na zdravljenju s ciklosporinom ne uživajo grenivk ali soka, saj le ta poveča koncentracijo ciklosporina v krvi, kar lahko privede do toksičnosti (3, 68). Mehanizem interakcije je inhibicija CYP3A4 v steni tankega črevesja, medtem ko je delovanje CYP3A4 v jetrih praktično ohranjeno (69). Enak mehanizem interakcije zasledimo pri seviljskih pomarančah, saj tako grenivke kot tudi seviljske pomaranče vsebujejo enako komponento – dihidroksibergamotin (70). Prav tako se med zdravljenjem s ciklosporinom ne sme uživati pripravkov, ki vsebujejo šentjanževko (Hypericum perforatum) (3, 71). Tudi mehanizem te interakcije vključuje delovanje na encim CYP3A4, le da za razliko od grenivk in seviljskih pomaranč, šentjanževka deluje kot induktor CYP3A4 in s tem poveča metabolizem ciklosporina, hkrati pa deluje tudi kot induktor P-glikoproteina (69). Vse to ima za posledico znižanje koncentracije ciklosporina v krvi in s tem zmanjšano učinkovitost zdravila. Znižanje koncentracije ciklosporina v krvi lahko povzroči tudi sočasno uživanje rdečega vina (66). V študijah, kjer so ugotavljali vpliv rdečega vina na koncentracijo ciklosporina v krvi, so ugotovili, da sočasno uživanje rdečega vina privede do znižanja AUC in c_{max} ciklosporina, ne povzroči pa spremembe razpolovnega časa. Mehanizem interakcije je neznan, vendar pa ti podatki nakazujejo, da gre za interakcijo na nivoju absorpcije in ne metabolizma oziroma izločanja. Kot morebiten mehanizem interakcije se navaja tvorba kompleksa med ciklosporinom in komponentami rdečega vina, kar privede do zmanjšane topnosti ciklosporina in posledično tudi zmanjšane absorpcije. Druga možnost, ki jo zasledimo v literaturi, pa je vpliv rdečega vina na aktivnost P-glikoproteina (72, 73). Znano je tudi, da so za to interakcijo odgovorne komponente rdečega vina, saj pri sočasnem uživanju belega vina in ciklosporina tega
pojava ne zasledimo (74). Prav tako ta fenomen ne moremo posplošiti na uživanje katerihkoli alkoholnih pijač, saj vnos velike količine alkohola deluje ravno nasprotno – zaradi inhibicije CYP3A4 povzroči dvig koncentracije ciklosporina v krvi (75).

1.9 METODE DOLOČANJA CIKLOSPORINA
Za določanje koncentracije ciklosporina v krvi so na voljo številne imunokemijske metode, katerih pomanjkljivost je navzkrižna reaktivnost protiteles z metaboliti, ki nastanejo pri presnovi ciklosporina. Zaradi tega so se kot zlati standard uveljavile kromatografske metode, predvsem LC-MS/MS, s katerimi lahko specifično določimo ciklosporin brez interference njegovih metabolitov (76). Kljub boljšim značilnostim kromatografskih metod še vedno približno 80 % laboratorijev po svetu za določevanje ciklosporina uporablja imunokemijske metode (77).

Pri uporabi imunokemijskih metod za določevanje koncentracije ciklosporina v krvi se moramo torej zavedati, da so izmerjene vrednosti v večini primerov lažno višje. Številne študije so namreč pokazale, da so koncentracije ciklosporina pri določitvi z imunokemijskimi metodami višje kot pri uporabi kromatografskih metod, kar lahko pripišemo navzkrižni reaktivnosti protiteles z metaboliti (1, 76, 78 – 81). Najpogostejše komercialne imunokemijske metode za določevanje ciklosporina ter njihova odstopanja od vrednosti določenih s kromatografskimi metodami so prikazane v preglednici IV.

Preglednica IV: Najpogostejše imunokemijske metode za določevanje koncentracije ciklosporina v krvi ter njihova odstopanja (1, 76, 78).

<table>
<thead>
<tr>
<th>METODA</th>
<th>ODSTOPANJE (pozitivno)</th>
</tr>
</thead>
<tbody>
<tr>
<td>EMIT</td>
<td>9 – 13 %</td>
</tr>
<tr>
<td>CEDIA Plus²</td>
<td>9 – 12 %</td>
</tr>
<tr>
<td>CMIA</td>
<td>nekatere študije navajajo primerljivost s kromatografskimi metodami, druge pa odstopanje do 15%</td>
</tr>
<tr>
<td>ACMIA</td>
<td>12 %</td>
</tr>
<tr>
<td>FPIA</td>
<td>15 – 30 %</td>
</tr>
</tbody>
</table>

V preglednici podana odstopanja so zgolj povprečne vrednosti, pri individualnih pacientih so ta odstopanja lahko znatno večja (tudi več kot 200 %), predvsem pa zelo variirajo od

² CEDIA Plus je izboljšana verzija prvotne metode CEDIA, katere pozitivno odstopanje glede na vrednosti dobljene s kromatografskimi metodami je bilo 18 – 25 %. Sedanja verzija CEDIA Plus ima tako izboljšano korelacijo s kromatografskimi tehnikami pa tudi izboljšano natančnost in linearnost ter razširjeno koncentracijsko območje (1, 78, 81).
primera do primera (1). Kako veliko je odstopanje rezultatov imunokemijskih metod od tistih dobljenih s kromatografskimi metodami, je odvisno tudi od vrste analiziranega vzorca. Zaradi manjšega deleža prisotnih metabolitov je namreč korelacija imunokemijskih metod s kromatografskimi bistveno boljša v primeru vzorca, odvzetega 2 uri po odmerku (določitev c₂). Pri vzorcih, odvzetih tik pred aplikacijo naslednjega odmerka, je delež prisotnih metabolitov bistveno večji, kar predstavlja tudi večjo interferenco (1, 78). Prav zaradi velike variabilnosti je neprimerna tudi uporaba različnih korekcijskih faktorjev, s katerimi bi poskušali odpraviti odstopanja v rezultatih različnih metod. V splošnem velja, da je za kontinuirano spremljanje koncentracij ciklosporina v krvi pri posameznem pacientu ves čas spremljanja potrebno uporabljati enako analizno metodo (78, 81).

1.10 OSNOVA FARMAKOKINETIČNEGA PROGRAMA DoseMe®
DoseMe® je avstralski farmakokinetični program, ki služi kot orodje za optimizacijo odmerjanja zdravil. V Avstraliji in Evropi je že registriran kot medicinski pripomoček, v kratkem pa pričakujejo še odobritev s strani FDA. Uporaba farmakokinetičnega programa kot je DoseMe®, je še posebej pomembna pri učinku terapijnih z drugimi lekališčnimi območjem in veliko variabilnostjo farmakokinetičnih parametrov, saj lahko s pomočjo programa prilagodimo odmerek za vsakega posameznega pacienta. DoseMe® nam omogoča optimizacijo zdravljenja s številnimi učinkovinami, tudi ciklosporinom. Nabor trenutno dostopnih učinkovin, glede na področje uporabe, je prikazan v preglednici V (82).

Preglednica V: Nabor učinkovin, ki so trenutno dostopne v programu DoseMe® (82).

<table>
<thead>
<tr>
<th>infekcijske bolezni</th>
<th>amikacin, gentamicin, meropenem, tobramicin, vankomicin, vorikonzanol; dodatno še: flukloksacilin, itrakonazol (kapsule, peroralna raztopina), piperacilin, teikoplanin</th>
</tr>
</thead>
<tbody>
<tr>
<td>antikoagulantna terapija</td>
<td>enoksaparin, faktor VIII, varfarin; dodatno še: dabigatran, enoksaparin (nosečnost)</td>
</tr>
<tr>
<td>onkologija</td>
<td>busulfan (i.v., per os), ciklosporin (per os), metotreksat, karboplatin; dodatno še: imatinib, bortezomib</td>
</tr>
<tr>
<td>presadirve</td>
<td>takrolimus (takošjšno in podaljšano sproščanje), busulfan (i.v., per os), ciklosporin (per os); dodatno še: mikofenolat</td>
</tr>
<tr>
<td>pediatrija</td>
<td>amikacin, busulfan (i.v., per os), ciklosporin (per os), faktor VIII, gentamicin, metotreksat, tobramicin, vankomicin, varfarin; dodatno še: itrakonazol (kapsule, peroralna raztopina), mikofenolat</td>
</tr>
</tbody>
</table>
Vse zgoraj navedene učinkovine so na voljo za spremljanje zdravljenja pri odrasli populaciji, za nekatere učinkovine pa so zasnovani tudi modeli, ki omogočajo uporabo pri pediatrični in neonatalni populaciji. Za optimizacijo odmerjanja izbrane učinkovine, DoseMe® uporablja pristop na osnovi Bayesovega teorema (»Bayesian dosing«), ki pri izračunu priporočenega odmerka upošteva populacijsko farmakokinetiko, bolnikove podatke (demografske, klinične, terapevtske) ter izmerjeno koncentracijo učinkovine v krvi (82). Z upoštevanjem vseh teh podatkov nam program skonstruira virtualni model, ki ustreza farmakokinetiki našega individualnega pacienta. Prednost uporabe Bayesovega teorema je v tem, da za oceno farmakokinetičnih parametrov pri posameznem pacientu upošteva tako populacijske farmakokinetične parametre in pripadajoče variabilnosti kot tudi izmerjeno koncentracijo učinkovine v krvi specifičnega pacienta (83, 84, 85). V primeru, da laboratorijske vrednosti še niso na voljo, nam DoseMe® omogoča izračun priporočenega začetnega odmerka zgolj na osnovi populacijskega modela in pacientovih lastnosti (82).

Vse zgoraj navedene lastnosti veljajo tudi v primeru optimizacije zdravljenja s ciklosporinom. Kot je že bilo v nalogi omenjeno, DoseMe® za opis farmakokinetike ciklosporina uporablja dvoprostorni model, v katerem je absorpcija ciklosporina definirana z Erlangovo (gama) porazdelitvijo, eliminacija pa poteka s kinetiko 1. reda. Kot optimalno število vmesnih prostorov v Erlangovem modelu so izbrali število pet. Model je bil razvit in validiran na populaciji pacientov s presajenimi organi (ledvice, srce, pljuča), pri čemer so bili v populacijo vključeni odrasli in tudi pediatrični bolniki. Zasnovan model je uporaben v primeru optimizacije zdravljenja z novejšo formulacijo ciklosporina, kot pomembno sočasno spremenljivko pa vključuje telesno maso. Končni model se je izkazal kot robusten ter z dobro napovedno vrednostjo, vseeno pa sta pri njegovi uporabi na drugih populacijah potrebna ustrezen premislek in previdnost (43, 82).
2 NAMEN DELA

Naša študija je zasnovana prospektivno in je sestavljena iz začetnega opazovalnega ter kasneješega intervencijskega obdobja. Namen začetnega opazovalnega obdobja je preveriti kako poteka trenutno zdravljenje s ciklosporinom, spoznati paciente in ugotoviti uporabnost računalniškega programa DoseMe® kot pripomočka za storitev TDM ciklosporina. Izkušnje in spoznanja, ki jih bomo pridobili v tem opazovalnem obdobju,nameravamo potem v intervencijskem obdobju uporabiti za napovedovanje koncentracij ciklosporina v krvi in optimizacijo odmerjanja pri individualnem bolniku. Končni cilj raziskave je oblikovanje protokola za individualno odmerjanje in spremljanje koncentracij ciklosporina ter njegova implementacija v redno klinično prakso, opredeliti pa želimo tudi vlogo kliničnega farmacevta pri izvajanju storitve TDM ciklosporina.

Ker se pri bolnikih s presajenimi organi pojavlja še dilema ali analizna metoda določanja ciklosporina v UKC Maribor daje primerljive rezultate tisti v UKC Ljubljana, kjer se bolniki primarno vodijo, bomo s hkratnim testiranjem vzorcev po obeh metodah poskušali preveriti tudi to vprašanje.

Hipoteze, ki smo si jih postavili, so:

- V začetnem opazovalnem obdobju bomo z uporabo farmakokinetičnega računalniškega programa DoseMe® potrdili njegovo uporabnost za storitev TDM ciklosporina.
- V kasnejšem intervencijskem obdobju bomo s pripravo protokola, uporabo farmakokinetičnega programa DoseMe® ter sodelovanjem med zdravniki in kliničnim farmacevtom zagotovili doseganje optimalnih koncentracij ciklosporina v krvi posameznega pacienta.
- S hkratnim testiranjem vzorcev na dveh analizatorjih bomo potrdili primerljivost rezultatov določanja ciklosporina v UKC Maribor in UKC Ljubljana.
3 MATERIALI IN METODE
3.1 METODE KLINIČNIH RAZISKAV
Izvedli smo prospektivno raziskavo na vseh hospitaliziranih in ambulantnih bolnikih v UKC Maribor, ki so od začetka julija pa do konca decembra 2016 prejemali ciklosporin. Naša raziskava je tako zajela Oddelek za nefrologijo, Oddelek za revmatologijo ter Oddelek za hematologijo in hematološko onkologijo UKC Maribor. Od šestih mesecev raziskave je v prvi polovici potekalo opazovalno obdobje, zadnji trije meseci pa so bili namenjeni intervencijskemu obdobju. Paciente smo v raziskavo vključili ob začetku opazovalnega obdobja ter jih spremljali do konca študije, razen v primeru, da je bilo zdravljenje s ciklosporinom predčasno ukinjeno. Prav tako smo v raziskavo naknadno vključili vse paciente, ki jim je bilo med potekom raziskave zdravljenje s ciklosporinom šele uvedeno. Vsi pacienti so v raziskavi sodelovali prostovoljno, izjava o prostovoljnem sodelovanju, obrazložitev raziskave ter navodila za pacienta so priloženi na koncu naloge (Priloge 1, 2, 3). Komisija za medicinsko etiko UKC Maribor je na seji dne 28.6.2016 ocenila našo raziskavo kot etično sprejemljivo ter izdala soglasje za izvedbo. S pomočjo baze podatkov Medis® ter pripravljenih vprašalnikov za paciente in obrazcev za zdravnike (Prilogi 4, 5) smo poskušali pridobiti vse potrebne informacije. Podatki, ki smo jih beležili so:

- **demografski podatki**: spol, starost, telesna masa, telesna višina;
- **klinični podatki**: indikacija za zdravljenje s ciklosporinom, sočasne bolezni, rezultati laboratorijskih preiskav, krvni tlak;
- **terapevtski podatki**: izbrana formulacija in odmerni režim ciklosporina, trajanje zdravljenja s ciklosporinom, sočasna terapija (predvsem podatki o zdravilih, ki vstopajo v interakcijo s ciklosporinom), morebitno uživanje različnih prehranskih dopolnil in zdravil za samozdravljenje (predvsem tistih, ki vstopajo v interakcijo s ciklosporinom);
- **podatki, pomembni za spremljanje koncentracij ciklosporina v krvi**: datum in ura odvzema vzorca, izmerjena koncentracija ciklosporina v krvi;
- **drugo**: pacientevo poznavanje terapije in njegova komplianca, podatki o morebitnih neželenih učinkih zdravljenja s ciklosporinom.

S pomočjo pridobljenih podatkov ter izmerjene vrednosti ciklosporina v krvi smo za vsakega pacienta, ob vsaki novi določitvi ciklosporina, v programu DoseMe® izvedli...
simulacijo ter predlagali najprimernejši režim odmerjanja. Pripravili smo priporočilo in ga posredovali lečečemu zdravniku, ta pa se je nato odločil ali bo naše priporočilo sprejel ali ne. Postopek smo ponovili pri vsaki novi določitvi koncentracije ciklosporina v krvi.

Na koncu študije smo pripravili protokol za odmerjanje in spremljanje koncentracij ciklosporina v krvi (Priloga 6) ter obrazec za spremljanje zdravljenja s ciklosporinom (Priloga 7). Da bi pacienti res dobili vse potrebne informacije v zvezi s ciklosporinom, smo za njih pripravili tudi informativno zloženko (Priloga 8).

3.2 METODE KEMIJSKE ANALIZE

Oddelek za laboratorijsko diagnostiko UKC Maribor pri svojem rednem delu določitev koncentracije ciklosporina v krvi bolnikov izvaja na analizatorju Thermo Scientific Indiko Plus (Thermo Fisher Scientific Oy, Vantaa, Finland) z reagenti CEDIA® Cyclosporine-PLUS Assay (Microgenics GmbH, Passau, Germany). Ker smo v naši študiji želeli razrešiti tudi dilemo o primerljivosti analiznih metod za določevanje ciklosporina v UKC Maribor in UKC Ljubljana, so v času trajanja študije na Oddelku za laboratorijsko diagnostiko UKC Maribor ciklosporin dodatno določali še na analizatorju Abbott Architect i4000 SR (Abbott Laboratories, Diagnostics Division, Abbott Park, IL, USA) z reagenti Architect Cyclosporine Assay (Fujirebio Diagnostics Inc., Malvern, PA, USA; for Abbott). To aplikacijo so pripravili zgolj v namen naše raziskave in je primerljiva z analizatorjem v UKC Ljubljana3. Da bi ugotovili, kateri izmed analizatorjev daje pravilnejše določitve ciklosporina v krvi, smo omejeno število vzorcev poslali še v LKH-Unik. Klinikum Graz, kjer ciklosporin določajo s pomočjo tekočinske kromatografije s tandemsko masno spektrometrijo (LC-MS/MS), ki velja za zlati standard (86). Obe metodi, uporabljeni na Oddelku za laboratorijsko diagnostiko UKC Maribor, sta opisani v nadaljevanju.

Določanje ciklosporina na analizatorju Thermo Scientific Indiko Plus poteka po metodi CEDIA Plus, ki je novejša različica metode CEDIA, z izboljšano natančnostjo in linearnostjo, medtem ko je sam princip metode še vedno enak. CEDIA oziroma »cloned enzyme donor immunoassay« je kompetitivna homoga encimska imunokemijska metoda, ki uporablja rekombinantno DNK tehnologijo. Metoda temelji na bakterijski β-galaktozidazi, ki je genetsko spremenjena tako, da je razdeljena na dva neaktivna fragmenta, donor in akceptor encima, pri čemer je donor encima konjugiran s

ciklosporinom. Ta dva fragmenta se lahko pod ustreznimi pogoji spontano povežeta v aktivni encim, ki nato pretvori substrat v obarvan produkt, kar merimo spektrofotometrično kot spremembo absorbance. V principu test deluje tako, da s ciklosporinom konjugiran donor encima in ciklosporin iz vzorca tekmujeta za vezavna mesta na monoklonskih protitelesih. Če je ciklosporin prisoten v vzorcu, se bo vezal na vezavna mesta, s tem pa bo v aktiven encim, ki bo nato pretvoril substrat v obarvan produkt. Več kot je ciklosporina v vzorcu, več aktivnega encima nastane in večje je tudi obarvanje. Nasprotno se zgodi v primeru manjše količine ciklosporina v vzorcu, saj bo več s ciklosporinom konjugiranega donorja vezanega na protitelesa, posledično bo manj aktivnega encima in tudi obarvanje bo manjše. Lahko torej rečemo, da je količina aktivnega encima in posledična sprememba v absorbanci direktno sorazmerna količini ciklosporina v vzorcu (87, 88). Nekatere najpomembnejše lastnosti metode so prikazane v naslednji preglednici (Preglednica VI).

Preglednica VI: Lastnosti metode CEDIA Plus za določanje koncentracije ciklosporina v krvi (87).

<table>
<thead>
<tr>
<th>vzorec: polna kri, odvzeta v epruveto z EDTA</th>
<th>INTERFERENCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>območje metode: 25 – 450 μg/L; vzorce, pri katerih pričakujemo višjo koncentracijo, je potrebno razredčiti s krvjo brez ciklosporina v razmerju 1:3</td>
<td>amikacin, ampicilin, azatioprin, cimetidin, digoksin, dipiridamol, dizopiramid, eritromicin, fenitoin, fenobarbital, furosemid, gentamicin, karbamazepin, ketokonazol, kinidin, kloramfenikol, lidokain, metilprednizolon, mikofenolna kislina, morfin, paracetamol, penicilin-G, prazosin, prednizolon, prednizon, prokainamid, rifampicin, salcilna kislina, streptomycin, takrolimus, teofilin, tobramicin, triamteren, valprojska kislina, vankomicin, verapamil</td>
</tr>
<tr>
<td>SPECIFIČNOST</td>
<td>bilirubin (< 60 mg/dL), trigliceridi (< 1000 mg/dL), cholesterol (< 300 mg/dL), celokupni proteini (< 10 g/dL), hematokrit (30,5 – 53,5 %) ne interferirajo – višje vrednosti lahko povzročijo znižano kvantifikacijsko activity,</td>
</tr>
<tr>
<td>metabolit</td>
<td>AM1</td>
</tr>
</tbody>
</table>

Metoda, na podlagi katere se določa ciklosporin na analizatorju Abbott Architect i4000 SR, je CMIA oziroma »chemiluminescent microparticle immunoassay«. Tudi to je imunokemijska metoda, ki pa ima v svoji izvedbi dodaten korak. Pred analizo vzorca na analizatorju je namreč potrebno vzorec lizirati, dodati precipitacijski reagent in centrifugirati. Za analizo se nato uporabi zgolj supernatant. Osnova te metode so paramagnetni mikrodelci, na katere so vezana protitelesa, ki ujamejo ciklosporin v vzorcu.
V prvem koraku se tako vzorcu dodajo prej omenjeni paramagnetni mikrodelci in ciklosporin, ki je prisoten v vzorcu, se veže na protitelesa na površini mikrodelcev. Nato sledi spiranje, po spiranju pa dodatek ciklosporina konjugiranega z akridinom, ki zasede še preostalo vezavna mesta. Po ponovnem spiranju je potrebno dodati še reagente, ki sprožijo kemiluminiscenčno reakcijo, detektor pa izmeri nastali svetlobni signal. Več kot je ciklosporina v vzorcu, manj ciklosporin-akridin konjugata se bo vezalo na mikrodelce in izmerjen signal bo manjši. Svetlobni signal, ki ga zaznamo, je torej obratno sorazmeren s količino ciklosporina v vzorcu (89, 90). Nekatere pomembne lastnosti opisane metode so navedene v preglednici VII.

Preglednica VII: Lastnosti metode CMIA za določanje koncentracije ciklosporina v krvi (89).

<table>
<thead>
<tr>
<th>vzorec: polna kri, odvzeta v epruveto z EDTA</th>
<th>INTERFERENCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>območje metode: 30 – 1500 μg/L</td>
<td>aciklovir, alopurinol, amikacin, amfotericin B, azatioprin, bromokRIPTin, cimetidin, ciprofloksacin, digoksin, diltiazem, dizopiramid, eritromicin, fenitoin, flukonazol, furosemid, ganciklovir, gemfibrozil, gentamicin, heparin, hidrokortizon, itrakonazol, karbamazepin, ketokonazol, kinidin, klonidin, kloramfenikol, klorokin, kolhicin, kortizon, labetalol, lovastatin, nikardipin, paracetamol, penicilin-G, prazosin, prednizolon, prednizon, prokainamid, propranolol, ranitidin, rifampin, sirolimus, takrolimus, tiklpidin, tobramicin, trimetoprim, valprojska kislina, verapamil</td>
</tr>
</tbody>
</table>

SPECIFIČNOST

<table>
<thead>
<tr>
<th>metabolit</th>
<th>navzkrižna reaktivnost [%]</th>
<th>SPECIFIČNOST</th>
</tr>
</thead>
<tbody>
<tr>
<td>AM1</td>
<td>-0,7 – 1,7</td>
<td>bilirubin (< 40 mg/dL), trigliceridi (< 1500 mg/dL), holesterol (< 500 mg/dL), celokupni proteini (< 12 g/dL), hematokrit (25 – 55 %), sečna kislina (< 20 mg/dL) ne interferirajo</td>
</tr>
<tr>
<td>AM1c</td>
<td>-0,8 – 3,3</td>
<td></td>
</tr>
<tr>
<td>AM4N</td>
<td>-2,3 – 3,1</td>
<td></td>
</tr>
<tr>
<td>AM9</td>
<td>-3,8 – 1,9</td>
<td></td>
</tr>
<tr>
<td>AM19</td>
<td>-2,9 – 2,1</td>
<td></td>
</tr>
</tbody>
</table>

3.3 METODE FARMAKOKINETIČNE ANALIZE

Za izračun farmakokinetičnih parametrov in priporočenega odmerka za vsakega posameznega pacienta smo uporabljali farmakokinetični program DoseMe®. Teorija v ozadju tega programa je bila opisana v uvodu, v nadaljevanju pa sledi prikaz uporabe programa po korakih, s priloženimi slikami (koraki in slike so povzeti iz uporabe programa z namenom optimizacije zdravljenja s ciklosporinom):

2. Po prijavi se nam odpre osnovna stran, kjer lahko izbiramo med različnimi zavihki. Če želimo dodajati nove ali urejati že obstoječe paciente, izberemo zavihek »Patients«.

![Add Patient](image)

Slika 4: Vnos novega pacienta v program DoseMe® (82).

4. Pacienta smo uspešno vnesli v program, sedaj pa mu moramo dodati še učinkovino, ki jo želimo spremljati. Pod zavihkom »Courses« izberemo »Add Course«, izmed ponujenih učinkovin poiščemo želeno in jo dodamo našemu pacientu s klikom na »Add«, kar je prikazano tudi na spodnji sliki (Slika 5).
5. V zavihku »Courses« sedaj opazimo dodano učinkovino. S klikom nanjo bomo prišli na stran, kjer lahko vnašamo in urejamo vse podatke vezane na zdravljenje z izbrano učinkovino. Pri že obstoječih pacientih tukaj najdemo vse dosedanje odmerne režime, laboratorijske rezultate in tudi vsa pretekla priporočila.

Slika 5: Koraki dodajanja učinkovine izbranemu pacientu (82).
Slika 6: Vnos terapevtskih in kliničnih podatkov ter ciljnih vrednosti za izračun optimalnega odmerka v programu DoseMe® (82).

7. S klikom na »Preview Doses« bomo prišli na zadnjo in najpomembnejšo stran pri pripravi priporočila. Na tej strani ponovno vidimo najpomembnejše informacije o izbranem pacientu, urejamo lahko vse podatke v zvezi s priporočenim odmerkom, hkrati pa so številčno in grafično prikazani tudi izidi izbranega odmernega režima (predvidena koncentracija učinkovine v krvi, AUC, koncentracijski profil). Ko se nam stran odpre, imamo v razdelku »Adjust Dose« izračunan priporočen odmerek na podlagi zahtev, ki smo jih vpisali na prejšnji strani. Prikazana je tudi predvidena koncentracija učinkovine v krvi ob izbranem odmerku. Program nam nato omogoča, da priporočen odmerek, odmerni interval, število odmerkov in čas naslednjega odmerka poljubno spreminjamo, sočasno pa se za vsak spremenjen podatek na novo izračunajo predvidene koncentracije učinkovine v krvi ter AUC (na sliki prikazano v

Slika 7: Urejanje in spreminjanje podatkov ter priporočenega odmerka pred pripravo končnega priporočila (82).

3.4 METODE STATISTIČNE ANALIZE
Rezultate, ki smo jih pridobili pri določitvi koncentracije ciklosporina v krvi z dvema različnima metodama, smo analizirali tudi statistično, saj smo želeli ugotoviti, ali metodi dajeta primerljive rezultate. Statistiko smo uporabili tudi pri primerjanju napovedne vrednosti programa DoseMe® ob uporabi zgolj c_0 ali c_0 in c_2. V obeh primerih smo uporabili računalniški program IBM SPSS Statistics®.

Najprej smo vedno preverili, ali se naša spremenljivka porazdeljuje normalno, in na podlagi rezultata izbrali ustrezen statistični test. Za test normalnosti porazdelitve smo uporabili Shapiro – Wilk test in Kolmogorov – Smirnov test. Ker smo v obeh primerih imeli primerjavo med dvema odvisnima vzorcema, smo za normalno porazdeljeno
spremenljivko uporabili parni t-test (t-test za odvisna vzorca), za spremenljivko, katere porazdelitev ni bila normalna, pa Wilcoxonov test predznacenih rangov. Pri vseh statističnih testih smo izbrali stopnjo tveganja $\alpha = 0.05$. Kadar je bila izračunana vrednost $p < 0.05$, smo ničelo hipotezo zavrnili.
4 REZULTATI

4.1 PRIMERI PACIENTOV

V nadaljevanju so predstavljeni primeri vseh pacientov, ki smo jih spremljali skozi našo študijo in poskušali optimizirati njihovo zdravljenje s ciklosporinom. Vsak pacient je predstavljen s preglednico z osnovnimi podatki ter ločenima preglednicama za intervencijsko obdobje. Pri vsakem obdobju je prikazan tudi enomesečni odsek iz celotnega koncentracijskega profila spremljanja zdravljenja s ciklosporinom (simulacija v programu DoseMe®). Prav tako je za vsako obdobje podan tudi komentar.

Zaradi velikega števila parametrov, ki jih je potrebno spremljati pri zdravljenju s ciklosporinom, le ti v nadaljevanju niso specifično prikazani. V primeru, da je pri zdravljenju prišlo do večjih odstopanj v katerem izmed varnostnih parametrov, je to posebej izpostavljeno v komentarju. Ker smo pri mehkih kapsulah s ciklosporinom omejeni z obstoječimi jakostmi (25 mg, 50 mg, 100 mg), je za dosego optimalnega odmerka večkrat potrebno uporabiti različne kombinacije. Kadar sta jutranji in večerni odmerek različna, je to prikazano kot *jutranji odmerek + večerni odmerek*. Ponekod je izbrani odmerek napisan v oklepaju, kar pomeni, da kljub določitvi koncentracije ciklosporina pacient ni bil v kontaktu z lečečim zdravnikom, nihče ni pregledal njegove terapije in zato je pacient nadaljeval zdravljenje z nespremenjenim odmerkom. Pri nekaterih pacientih smo razen c₀ spremljali tudi c₂, pri vseh pa smo zdravljenje prilagajali na osnovi priporočenih terapevtskih območij za c₀. Ob vsaki meritvi smo izračunali priporočen odmerek za posameznega pacienta in s tem poskušali optimizirati zdravljenje s ciklosporinom.

PRIMER 1

Preglednica VIII: Primer 1 – osnovni podatki.

<table>
<thead>
<tr>
<th>spol: moški</th>
<th>starost: 45 let</th>
<th>TM [kg]: 75</th>
<th>TV [cm]: 169</th>
</tr>
</thead>
<tbody>
<tr>
<td>indikacija za ciklosporin: glomerulonefritis</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>priporočeno terapevtsko območje za ciklosporin [μg/L] – C₀: 125 – 200</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>začetek zdravljenja s ciklosporinom: 19.11.2013</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>izbrana formulacija ciklosporina: Sandimmun Neoral</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>odmerni režim ciklosporina pred pričetkom študije: 100 mg + 75 mg</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>sočasna terapija z ZU v interakciji s ciklosporinom: alopurinol 100 mg, rosuvastatin 5 mg, ramipril 2 x 5 mg, furosemid 40 mg</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
opazovalno obdobje:

Preglednica IX: Primer 1 – opazovalno obdobje.

<table>
<thead>
<tr>
<th>DATUM</th>
<th>KONC. CIKLOSPORINA V KRVI [μg/L]</th>
<th>PRIPOROČEN ODMERNI REŽIM [mg]</th>
<th>IZBRAN ODMERNI REŽIM [mg]</th>
<th>SPREMEMBE V SOČASNI TERAPIJI (relevantne ZU)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>C₀</td>
<td>C₂</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22.6.2016</td>
<td>76</td>
<td>609</td>
<td>/</td>
<td>100 + 75</td>
</tr>
<tr>
<td>12.9.2016</td>
<td>65</td>
<td>/</td>
<td>/</td>
<td>2 x 100</td>
</tr>
<tr>
<td>16.9.2016</td>
<td>104</td>
<td>592</td>
<td>/</td>
<td>2 x 100</td>
</tr>
</tbody>
</table>

Slika 8: Primer 1 – izsek koncentracijskega profila (DoseMe® simulacija) – opazovalno obdobje.

Pacient prejema ciklosporin zaradi glomerulonefritisa, njegovo zdravljenje se vodi ambulantno (Nefrološka ambulanta). Spremljali smo vrednosti c₀ in c₂, pri čemer so bile izmerjene vrednosti c₀ nižje od našega predlaganega terapevtskega območja, saj je lečeči zdravnik kot ciljano območje za c₀ postavil vrednosti < 100 μg/L. Ker gre za že utečeno zdravljenje z ustreznimi učinki ciklosporina, temu nismo nasprotovali. Vrednosti c₂ so bile ustrezena. Ugotovili smo, da ima pacient namesto rednih mesečnih kontrol, določitev ciklosporina in pregled pri zdravniku le na vsake 3 mesece. Iz izpolnjene vprašalnika smo izvedeli, da pacient svoje zdravilo redno jemlje, ne opaža neželenih učinkov, prav tako ne uživa grenivk in pripravkov iz šentjanževke. Izbira statina v sočasni terapiji je ustrezena in prilagojena zdravljenju s ciklosporinom. Glede na ustrezena in dokaj konstantne vrednosti c₀ je tudi interakcija z alopurinolom nadzorovana. Laboratorijske vrednosti niso nakazovale težav zaradi uporabe ramiprila in furosemida. Program DoseMe® se je pri izbranem pacientu izkazal kot uporaben za spremljanje zdravljenja s ciklosporinom.
Intervencijsko obdobje:

Preglednica X: Primer 1 – intervencijsko obdobje.

<table>
<thead>
<tr>
<th>DATUM</th>
<th>KONC. CIKLOSPORINA V KRVI [μg/L]</th>
<th>PRIPOROČEN ODMERNI REŽIM [mg]</th>
<th>IZBRAN ODMERNI REŽIM [mg]</th>
<th>SPREMEMBE V SOČASNI TERAPIJI (relevantne ZU)</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.12.2016</td>
<td>114/</td>
<td>2 x 100</td>
<td>2 x 100</td>
<td>/</td>
</tr>
</tbody>
</table>

Slika 9: Primer 1 - izsek koncentracijskega profila (DoseMe® simulacija) – intervencijsko obdobje.

V intervencijskem obdobju smo imeli pri pacientu samo eno meritev koncentracije ciklosporina v krvi. Z upoštevanjem terapevtskega območja uporabljenega s strani lečečega zdravnika smo s pomočjo programa DoseMe® predlagali nadaljevanje zdravljenja s ciklosporinom v odmerku 2 x 100 mg, kar je bilo tudi sprejeto. Pacient je zdravljenje dobro prenašal, bolezen je bila v remisiji. V laboratorijskih vrednostih ni bilo posebnosti, tudi krvni tlak je bil ustrezno nadzorovan. Predlagali smo redne mesečne kontrole ciklosporina v krvi, vendar se zdravnik za to ni odločil, saj je bilo zdravljenje ustrezno vodeno tudi s kontrolami vsake 3 mesece. Opozorili smo na potrebo po meritvi ciklosporina v primeru spremembe odmerka alopurinola. Zaradi furosemida in ramiprila je potrebno dodatno spremljati ledvično funkcijo ter koncentracijo kalija v serumu.

PRIMER 2

Preglednica XI: Primer 2 – osnovni podatki.

<table>
<thead>
<tr>
<th>spol: ženski</th>
<th>starost: 68 let</th>
<th>TM [kg]: 68</th>
<th>TV [cm]: 166</th>
</tr>
</thead>
<tbody>
<tr>
<td>indokacija za ciklosporin: nefrotski sindrom</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>priporočeno terapevtsko območje za ciklosporin [μg/L] – C₀: 80 – 120</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>začetek zdravljenja s ciklosporinom: 3.1.2013</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>izbrana formulacija ciklosporina: Sandimmun Neoral</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>odmerni režim ciklosporina pred pričetkom študije: 100 mg + 50 mg</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>sočasna terapija z ZU v interakciji s ciklosporinom: atorvastatin 40 mg, perindopril 8 mg</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
opazovalno obdobje:

Preglednica XII: Primer 2 – opazovalno obdobje.

<table>
<thead>
<tr>
<th>DATUM</th>
<th>KONC. CIKLOSPORINA V KRVI [μg/L]</th>
<th>PRIPOROČEN ODMERNI REŽIM [mg]</th>
<th>IZBRAN ODMERNI REŽIM [mg]</th>
<th>SPREMEMBE V SOČASNI TERAPIJI (relevantne ZU)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>C₀</td>
<td>C₂</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.7.2016</td>
<td>101</td>
<td>/</td>
<td>/</td>
<td>100 + 75</td>
</tr>
<tr>
<td>30.8.2016</td>
<td>118</td>
<td>/</td>
<td>/</td>
<td>100 + 75</td>
</tr>
<tr>
<td>22.9.2016</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td>100 + 75</td>
</tr>
</tbody>
</table>

Slika 10: Primer 2 – izsek koncentracijskega profila (DoseMe® simulacija) – opazovalno obdobje.

Pacientka prejema ciklosporin zaradi nefrotskega sindroma, njeno zdravljenje se vodi ambulantno (Nefrološka ambulanta). Spremljali smo vrednosti c₀, ki so bile ustrezne, glede na naše priporočeno terapevtsko območje. V tem obdobju so bile tudi meritve koncentracije ciklosporina dokaj redne. Iz izpolnjenega vprašalnika smo ugotovili, da pacientka zdravljenje s ciklosporinom težko prenaša. Zdravljenje traja že več let, pacientka ima težave z mišicami in sklepi, občasno se pojavljajo tudi glavoboli. Ne uživa grenivk in pripravkov iz šentjanževke. Pacientka je tudi priznala, da občasno pozabi vzeti odmerek ciklosporina, vendar naj bi se to zgodilo zanemarljivo redko. Izbira statina v terapiji je glede na sočasno zdravljenje s ciklosporinom neprimerna, serumska vrednost kalija pa je kljub uporabi perindoprilja v mejah normale. Program DoseMe® je ustrezno prilagodil populacijski model naši individualni pacientki.
intervencijsko obdobje:

Preglednica XIII: Primer 2 – intervencijsko obdobje.

<table>
<thead>
<tr>
<th>DATUM</th>
<th>KONC. CIKLOSPORINA V KRVI [μg/L]</th>
<th>PRIPOROČEN ODMERNI REŽIM [mg]</th>
<th>IZBRAN ODMERNI REŽIM [mg]</th>
<th>SPREMEMBE V SOČASNI TERAPIJI (relevantne ZU)</th>
</tr>
</thead>
<tbody>
<tr>
<td>25.10.2016</td>
<td>121</td>
<td>/</td>
<td>2 x 75</td>
<td>100 + 50</td>
</tr>
<tr>
<td>29.11.2016</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td>ukinitvev atorvastatin</td>
</tr>
<tr>
<td>12.12.2016</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td>100 + 50</td>
</tr>
</tbody>
</table>

Slika 11: Primer 2 – izsek koncentracijskega profila (DoseMe® simulacija) – intervencijsko obdobje.

Kot lahko opazimo, meritve ciklosporina v krvi v intervencijskem obdobju niso bile dovolj pogoste. Koncentracija ciklosporina v krvi je bila določena samo enkrat v 3 mesecih. Razlog za to naj bi bila pacientkina slabša mobilnost, prav tako je pacientka konzultacijo z lečečim zdravnikom raje opravila kar po telefonu, tako da je na dejansko kontrolo prišla bolj redko. Ob tej enkratni meritvi smo s pomočjo programa DoseMe® podali priporočilo za odmerjanje ciklosporina v prihodnje in sicer smo predlagali 2 x 75 mg. Ker se je zdravnik s pacientko še pred prejетjem priporočila dogovoril za odmerni režim 100 mg zjutraj + 50 mg zvečer, naše priporočilo ni bilo sprejeto v celoti. Skupen dnevni odmerek je sicer enak, vendar bi bila v primeru našega predlaganega režima nihanja v koncentraciji manjša, kar je ugodno za samo zdravljenje. Zdravnik si tudi po naši razlagi ni premislil in odmernega režima ni spremenil. Dodatno smo pri pacientki opozorili na interakcijo z atorvastatinom, saj je pacientka tožila tudi o bolečinah v mišicah na nogah. Rezultati laboratorijskih preiskav niso pokazali nobenih odstopanj, atorvastatin pa se je izkazal celo kot nepotreben in je bil na koncu ukinjen. Zaradi povišanih vrednosti krvnega tlaka je pri pacientki potrebno redno spremljanje in morebitna sprememba antihipertenzivne terapije, spremljati pa je potrebno tudi koncentracijo kalija v serumu.
PRIMER 3

Preglednica XIV: Primer 3 – osnovni podatki.

<table>
<thead>
<tr>
<th>spol</th>
<th>starost: 59 let</th>
<th>TM [kg]: 97</th>
<th>TV [cm]: 185</th>
</tr>
</thead>
<tbody>
<tr>
<td>indikacija za ciklosporin: glomerulonefritis</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>*priporočeno terapevtsko območje za ciklosporin [μg/L] – C₀: 125 – 200</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>začetek zdravljenja s ciklosporinom: 29.11.2016</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>izbrana formulacija ciklosporina: Sandimmun Neoral</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>odmerni režim ciklosporina pred pričetkom študije: uvedeno tekom študije v odmerku 2 x 100 mg</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>sočasna terapija z ZU v interakciji s ciklosporinom: diltiazem 3 x 60 mg, rosvastatin 40 mg, zofenopril 30 mg, metilprednizolon 12 mg</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

opazovalno obdobje: /

intervencijsko obdobje:

Preglednica XV: Primer 3 – intervencijsko obdobje.

<table>
<thead>
<tr>
<th>DATUM</th>
<th>KONC. CIKLOSPORINA V KRVI [μg/L]</th>
<th>PRIPOROČEN ODMERNI REŽIM [mg]</th>
<th>IZBRAN ODMERNI REŽIM [mg]</th>
<th>SPREMEMBE V SOČASNI TERAPIJI (relevantne ZU)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>C₀</td>
<td>C₂</td>
<td></td>
<td>rosvastatin se zamenja za pravastatin 20 mg</td>
</tr>
<tr>
<td>1.12.2016</td>
<td>116</td>
<td>265</td>
<td>2 x 150</td>
<td></td>
</tr>
<tr>
<td>5.12.2016</td>
<td>165</td>
<td>214</td>
<td>2 x 125</td>
<td></td>
</tr>
</tbody>
</table>

Slika 12: Primer 3 – izsek koncentracijskega profila (DoseMe® simulacija) – intervencijsko obdobje.

Pacientu je bilo zdravljenje s ciklosporinom uvedeno v intervencijskem obdobju naše študije, ko je bil hospitaliziran na Oddelku za nefrologijo zaradi glomerulonefritisa. Uvajanje zdravljenja je tako potekalo v bolnišnici in vse koncentracije so bile izmerjene med hospitalizacijo. Iz izpolnjenega vprašalnika smo izvedeli, da pacient pogosto uživa grenivke, zato smo ga na to opozorili in mu nadaljnje uživanje grenivk odsvetovali. Lečečega zdravnika smo opozorili ne usstrezen odmerek statina in predlagali znižanje...
odmerka rosuvastatina na 5 mg dnevno ali zamenjavo za pravastatin v odmerku 20 mg dnevno. Zdravnik se je odločil za ukinitev rosuvastatina in uvedbo pravastatina 20 mg. Sočasno s ciklosporinom je bil uveden tudi diltiazem, ki povzroči povišanje koncentracije ciklosporina v krvi. Ta kombinacija je bila v patientovo terapijo vpeljana namerno, saj lahko tako dosežemo višje koncentracije ciklosporina pri nižjih odmerkih. Diltiazem tudi zmanjšuje proteinurijo in s tem dodatno ščiti ledvice (91). Izmerjene koncentracije ciklosporina so vključevale tudi morebitno povišanje zaradi metilprednizolona. Ker je bil pacient hospitaliziran, nam je to omogočilo merjenje tako c_0 kot tudi c_2. Ker so bile vrednosti c_2 nenavadno nizke in je obstajal dvom o natančnem času odvzema vzorca, smo drugo določitev c_2 izbrisali iz koncentracijskega profila in zdravljenje prilagajali na osnovi preostalih treh meritev. Uporabljen koncentracijski profil je prikazan na naslednji sliki (Slika 13).

Slika 13: Primer 3 – nov koncentracijski profil.
PRIMER 4

Preglednica XVI: Primer 4 – osnovni podatki.

<table>
<thead>
<tr>
<th>spol: moški</th>
<th>starost: 74 let</th>
<th>TM [kg]: 89</th>
<th>TV [cm]: 172</th>
</tr>
</thead>
</table>

indikacija za ciklosporin: nefrotski sindrom

priporočeno terapevtsko območje za ciklosporin [μg/L] – C₀: 80 – 120
začetek zdravljenja s ciklosporinom: 1.12.2016
izbrana formulacija ciklosporina: Sandimmun Neoral
odmerni režim ciklosporina pred pričetkom študije: uvedeno tekom študije v odmerku 2 x 100 mg
sočasna terapija z ZU v interakciji s ciklosporinom: diltiazem 3 x 60 mg, karvedilol 2 x 12,5 mg, metilprednizolon 8 mg, perindopril 4 mg, spironolakton 25 mg, furosemid 40 mg

opazovalno obdobje: /

intervencijsko obdobje:

Preglednica XVII: Primer 4 – interventijsko obdobje.

<table>
<thead>
<tr>
<th>DATUM</th>
<th>KONC. CIKLOSPORINA V KRVI [μg/L]</th>
<th>PRIPOROČEN ODMERNI REŽIM [mg]</th>
<th>IZBRAN ODMERNI REŽIM [mg]</th>
<th>SPREMEMBE V SOČASNI TERAPIJI (relevantne ZU)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>C₀</td>
<td>C₂</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.12.2016</td>
<td>208</td>
<td>610</td>
<td>75 + 50</td>
<td>75 + 50</td>
</tr>
</tbody>
</table>

Slika 14: Primer 4 – izsek koncentracijskega profila (DoseMe® simulacija) – interventijsko obdobje.

Pacient je bil v času interventijskega obdobja naše študije hospitaliziran na Oddelku za nefrologijo zaradi nefrotskega sindroma. Zdravljenje s ciklosporinom je bilo uvedeno med hospitalizacijo. Iz vprašalnika, ki ga je pacient izpolnil, smo izvedeli, da ne uživa grenivk ali pripravkov iz šentjanževke. Sočasno s ciklosporinom je bil v terapijo uveden diltiazem v odmerku 3 x 60 mg, ponovno z namenom znižanja odmerka ciklosporina ter zmanjševanja proteinurije. Dodatno ima pacient v terapiji še karvedilol in metilprednizolon, ki prav tako lahko povišata koncentracijo ciklosporina v krvi, metilprednizolon sicer le v visokih odmerkah. Zaradi vsega navedenega je bila koncentracija ciklosporina ob prvi meritvi višja kot so zdravniki pričakovali in zato je bilo
potrebno odmerek zmanjšati. Na podlagi izmerjenih vrednosti \(c_0 \) in \(c_2 \) smo s pomočjo programa DoseMe® priporočili odmerni režim 75 mg zjutraj + 50 mg včeraj, kar je lečeči zdravnik tudi sprejel. Laboratorijske vrednosti so bile tekom hospitalizacije brez posebnosti, vendar pa je zaradi uporabe perindopril, spironolaktona in furosemida tudi v prihodnje potrebno spremljati vrednosti kalija v serumu ter ledvično funkcijo. Ob odpustu smo svetovali še mesečne kontrole koncentracije ciklosporina ter redne meritve krvnega tlaka. S programom DoseMe® smo uspešno prilagodili odmerek za izbranega pacienta.

PRIMER 5

Preglednica XVIII: *Primer 5 – osnovni podatki.*

<table>
<thead>
<tr>
<th>spol: ženski</th>
<th>starost: 61 let</th>
<th>TM [kg]: 95</th>
<th>TV [cm]: 157</th>
</tr>
</thead>
<tbody>
<tr>
<td>indikacija za ciklosporin: dermatomiozitis</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>priporočeno terapevtsko območje za ciklosporin [μg/L] – (C_0): 150</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>začetek zdravljenja s ciklosporinom: 15.10.2015</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>izbrana formulacija ciklosporina: Sandimmun Neoral</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>odmerni režim ciklosporina pred pričetkom študije: 2 x 50 mg</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>sočasna terapija z ZU v interakciji s ciklosporinom: metilprednizolon 8 mg, perindopril 4 mg, naproksen 550 mg p.p.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

opazovalno obdobje:

Preglednica XIX: *Primer 5 – opazovalno obdobje.*

<table>
<thead>
<tr>
<th>DATUM</th>
<th>KONC. CIKLOSPORINA V KRVI [μg/L]</th>
<th>PRIPOROČEN ODMERNI REŽIM [mg]</th>
<th>IZBRAN ODMERNI REŽIM [mg]</th>
<th>SPREMEMBE V SOČASNI TERAPIJI (relevantne ZU)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C(_0)</td>
<td>C(_2)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>28.6.2016</td>
<td>35 /</td>
<td>/</td>
<td>(2 x 50)</td>
<td>/</td>
</tr>
<tr>
<td>30.8.2016</td>
<td>38 /</td>
<td>/</td>
<td>50 + 25</td>
<td>zniževanje metilprednizolona do 4 mg</td>
</tr>
</tbody>
</table>

Slika 15: Primer 5 – izsek koncentracijskega profila (DoseMe® simulacija) – opazovalno obdobje.
Pacientka je med opazovalnim obdobjem naše študije prejemala ciklosporin zaradi dermatomiozitisa in bila vodena ambulantno (Revmatološka ambulanta). Izvedene so bile meritve c_0, pri čemer vidimo, da so izmerjene koncentracije izrazito pod priporočenimi vrednostmi. Tudi če upoštevamo zgolj splošno terapevtsko območje za avtoimunske bolezn (c0: 50 – 150 μg/L) vidimo, da so vrednosti c_0 še vedno pod spodnjo mejo območja. Dodatno lahko v preglednici XIX opazimo, da določitvi ciklosporina dne 28.6.2016 še naslednja dva meseca ni sledila nobena kontrola pri zdravniku. Rezultata te meritve lečeči zdravnik ni pogledal in pacientka je zdravljenje nadaljevala z nespremenjenim odmerkom. Odmerek so spremenili šele ob naslednji meritvi, vendar so takrat pri odločitvi o velikosti odmerka prevladali izraženi neženi učinki in ne podatek o izmerjeni koncentraciji. Pacientka je navajala občasno vrtoglavico, slabost, bolečine v mišicah in sklepih ter nerazpoloženost. To so bili vzroki za znižanje odmerka kljub nizki koncentraciji ciklosporina v krvi. Čeprav ima pacientka v sočasni terapiji metilprednizolon, do bistvenega povišanja koncentracije ciklosporina ni prišlo. Prav tako se na koncentraciji ciklosporina ni odrazilo uživanje grenivk, ki ga je pacientka sicer navedla v vprašalki kot zelo redko. Rezultati laboratorijskih preiskav so bili brez posebnosti. Program DoseMe® je dobro predvidel vrednosti ciklosporina v krvi naše pacientke.

intervencijsko obdobje:

Preglednica XX: Primer 5 – intervencijsko obdobje.

<table>
<thead>
<tr>
<th>DATUM</th>
<th>KONC. CIKLOSPORINA V KRVI [μg/L]</th>
<th>PRIPOROČEN ODMERNI REŽIM [mg]</th>
<th>IZBRAN ODMERNI REŽIM [mg]</th>
<th>SPREMEMBE V SOČASNI TERAPIJI (relevantne ZU)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>C_0</td>
<td>C_2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.10.2016</td>
<td>49/</td>
<td>/</td>
<td>50 + 25</td>
<td>/</td>
</tr>
<tr>
<td>11.10.2016</td>
<td>/</td>
<td>/</td>
<td>ciklosporin se UKINE</td>
<td>/</td>
</tr>
</tbody>
</table>

Pacientka je imela v začetku intervencijskega obdobja enkrat pomerjeno koncentracijo ciklosporina v krvi, vendar smo bili o meritvi prepozno obveščeni in zdravljenje je bilo ukinjeno še preden smo uspeli pripraviti priporočilo. Lečeci zdravnik se je zaradi neželenih učinkov odločil za prenehanje zdravljenja s ciklosporinom, kljub temu, da je pri pacientki prišlo do izboljšanja kožnih sprememb. Vidimo torej, da je kljub (pre)niskim koncentracijam ciklosporina v krvi pri pacientki prišlo do želenih in tudi neželenih učinkov ciklosporina. Laboratorijske vrednosti niso pokazale nobenih odstopanj.
PRIMER 6

Preglednica XXI: Primer 6 – osnovni podatki.

<table>
<thead>
<tr>
<th>spol: ženski</th>
<th>starost: 49 let</th>
<th>TM [kg]: 50</th>
<th>TV [cm]: 175</th>
</tr>
</thead>
</table>

indikacija za ciklosporin: SLE

priporočeno terapevtsko območje za ciklosporin [µg/L] – \(C_0 \): 80 – 150

začetek zdravljenja s ciklosporinom: 31.5.2016

izbrana formulacija ciklosporina: Sandimmun Neoral

odmerni režim ciklosporina pred pričetkom študije: 2 x 50 mg

sočasna terapija z ZU v interakciji s ciklosporinom: prednizolon 10 mg, klorokin 250 mg, perindopril 4 mg, etorikoksib 90 mg

opazovalno obdobje:

Preglednica XXII: Primer 6 – opazovalno obdobje.

<table>
<thead>
<tr>
<th>Datum</th>
<th>Konc. ciklosporina v krvi [µg/L]</th>
<th>Priporočen odmerni režim [mg]</th>
<th>Izbran odmerni režim [mg]</th>
<th>Spremembe v sočasni terapiji (relevantne ZU)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(C_0)</td>
<td>(C_2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>27.6.2016</td>
<td>44</td>
<td>/</td>
<td>3 x 50</td>
<td>/</td>
</tr>
<tr>
<td>15.7.2016</td>
<td>34</td>
<td>/</td>
<td>2 x 100</td>
<td>/</td>
</tr>
<tr>
<td>16.8.2016</td>
<td>118</td>
<td>/</td>
<td>3 x 50</td>
<td>prednizolon se zniža na 5 mg</td>
</tr>
<tr>
<td>6.9.2016</td>
<td>/</td>
<td>/</td>
<td>ciklosporin se UKINE</td>
<td>/</td>
</tr>
</tbody>
</table>

Slika 16: Primer 6 – izsek koncentracijskega profila (DoseMe® simulacija) – opazovalno obdobje.

V opazovalnem obdobju študije je pacientka prejemala ciklosporin zaradi SLE. Njeno zdravljenje je bilo spremljano ambulantno (Revmatološka ambulanta). V preglednici XXII vidimo, da je imela pacientka redne mesečne kontrole, hkrati pa se je odmerjanje ciklosporina pogosto spreminjalo in posledično so tudi izmerjene koncentracije zelo raznolike. Pri pacientki zasledimo odmerjanje ciklosporina trikrat dnevno, kar v literaturi ni pogosto omenjeno. Vse smernice pa tudi Povzetek glavnih značilnosti zdravila Sandimmun Neoral navajajo odmerjanje dvakrat na dan. Odmerjanje na 8 ur zasledimo pri
otrocih, ki ciklosporin hitreje izločajo in posledično potrebujejo krajši odmerni interval. Pri pacientki niti odmerjanje 2 x 50 mg niti 3 x 50 mg ni dvignilo koncentracije ciklosporina dovolj visoko. Glede na priporočeno terapevtsko območje je šele odmerjanje 2 x 100 mg dalo ustrezen rezultat. Kljub ustreznim koncentracijam in zelo dobri remisiji bolezni pa so se pri pacientki pojavili neželeni učinki (slabo počutje, glavobol, tremor, hujšanje, povišanje krvnega tlaka, gingivitis, hiperplazija dlesni), zato se je lečilni zdravnik najprej odločil za spremembo odmernega režima, nato pa je bilo zdravljenje s ciklosporinom ukinjeno. Ker pacientka ni vrnila izpolnjenega vprašalnika, nimamo informacije o morebitnem uživanju grenivk ali šentjanževke. Glede na nizke koncentracije, ki smo jih opazali pri pacientki, očitno klorokin in prednizolon nista bistveno vplivala na koncentracijo ciklosporina v krvi. Rezultati laboratorijskih preiskav niso pokazali nobenih odstopanj. Glede na težave, ki jih je lečilni zdravnik imel pri iskanju optimalnega odmernega režima za izbrano pacientko, bi lahko z uporabo programa DoseMe® precej pripomogli k optimizaciji pacientkinega zdravljenja in zdravniku olajšali delo.

intervencijsko obdobje: /

PRIMER 7

Preglednica XXIII: Primer 7 – osnovni podatki.

<table>
<thead>
<tr>
<th>spol: ženski</th>
<th>starost: 57 let</th>
<th>TM [kg]: 63</th>
<th>TV [cm]: 158</th>
</tr>
</thead>
<tbody>
<tr>
<td>indikacija za ciklosporin: Behcetova bolezen</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>priporočeno terapevtsko območje za ciklosporin [µg/L] – C₀: > 50</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>začetek zdravljenja s ciklosporinom: 26.5.2016</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>izbrana formulacija ciklosporina: Sandimmun Neoral</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>odmerni režim ciklosporina pred pričetkom študije: 2 x 25 mg</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>sočasna terapija z ZU v interakciji s ciklosporinom: prednizolon 10 mg, omeprazol 20 mg</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

opazovalno obdobje:

Preglednica XXIV: Primer 7 – opazovalno obdobje.

<table>
<thead>
<tr>
<th>DATUM</th>
<th>KONC. CIKLOSPORINA V KRVI [µg/L]</th>
<th>PRIPOROČEN ODMERNI REŽIM [mg]</th>
<th>IZBRAN ODMERNI REŽIM [mg]</th>
<th>SPREMEMBE V SOČASNI TERAPIJI (relevantne ZU)</th>
</tr>
</thead>
<tbody>
<tr>
<td>24.6.2016</td>
<td>39 /</td>
<td>/</td>
<td>50 + 25</td>
<td>/</td>
</tr>
<tr>
<td>7.7.2016</td>
<td>170 /</td>
<td>/</td>
<td>50 + 25</td>
<td>/</td>
</tr>
<tr>
<td>9.8.2016</td>
<td>224 /</td>
<td>/</td>
<td>(50 + 25)</td>
<td>/</td>
</tr>
<tr>
<td>27.9.2016</td>
<td>31 /</td>
<td>/</td>
<td>2 x 50</td>
<td>/</td>
</tr>
</tbody>
</table>

38

Slika 17: Primer 7 – izsek koncentracijskega profila (DoseMe® simulacija) – opazovalno obdobje.

Slika 18: Primer 7 – nov koncentracijski profil.

Če izvzamemo vrednosti ciklosporina, ki so bile določene ob interakciji z grenivko, vidimo, da so izmerjene koncentracije prenizke. Razen grenivke, sočasna uporaba drugih
učinkovin ni povzročila povišanja koncentracije ciklosporina v krvi. Pacientka je navajala dobro počutje, opazila ni nobenih neželenih učinkov in zato ni razloga za tako nizke odmerke. Tudi rezultati laboratorijskih preiskav niso nakazovali na toksične učinke ciklosporina.

intervencijsko obdobje:

Preglednica XXV: Primer 7 – intervencijsko obdobje.

<table>
<thead>
<tr>
<th>DATUM</th>
<th>KONC. CIKLOSPORINA V KRVI [μg/L]</th>
<th>PRIPOROČEN ODMERNI REŽIM [mg]</th>
<th>IZBRAN ODMERNI REŽIM [mg]</th>
<th>SPREMEMBE V SOČASNI TERAPIJI (relevantne ZU)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(C_0)</td>
<td>(C_2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12.10.2016</td>
<td>45</td>
<td>/</td>
<td>75 + 50</td>
<td>(2 x 50)</td>
</tr>
<tr>
<td>28.10.2016</td>
<td>< 25</td>
<td>/</td>
<td>/</td>
<td>prednizolon se zniža na 10 mg in 7,5 mg izmenjava</td>
</tr>
<tr>
<td>11.11.2016</td>
<td>31</td>
<td>/</td>
<td>2 x 75</td>
<td></td>
</tr>
<tr>
<td>1.12.2016</td>
<td>65</td>
<td>/</td>
<td>2 x 75</td>
<td></td>
</tr>
<tr>
<td>19.12.2016</td>
<td>102</td>
<td>/</td>
<td>2 x 75</td>
<td>prednizolon se zniža na 2,5 mg</td>
</tr>
</tbody>
</table>

Slika 19: Primer 7 – izsek koncentracijskega profila (DoseMe® simulacija) – intervencijsko obdobje.

V intervencijskem obdobju smo želeli s pomočjo programa DoseMe® izbrati ustrezen odmerek ciklosporina, s katerim bi koncentracijo dvignili nad spodnjo mejo terapevtskega območja, torej > 50 μg/L. Kasneje smo uspeli zdravnike prepričati, da poskusimo z optimizacijo odmerka doseči koncentracijo ciklosporina znotraj splošnega terapevtskega območja za avtoimunske bolezn. Pri izračunavanju priporočenega odmerka smo zato v programu DoseMe® ciljali na koncentracijo okrog 100 μg/L, kar nam je proti koncu intervencijskega obdobja tudi uspelo doseči. Vsa pripravljena priporočila so bila sprejeta. Pacientka je zdravljenje tudi pri višjih odmerkih dobro prenašala, poročala ni o nobenih
neželenih učinkih. Smo pa pri pacientki opazili, da so bile izmerjene vrednosti ciklosporina v krvki nekoliko višje kot jih je predvidel program, prav tako je bil opazen trend naraščanja koncentracije kljub nespremenjenemu odmerku. Vzrok za to je sicer lahko tudi časovno nenatančno jemanje vzorca, zaradi česar nismo vsakič izmerili dejanskega minimuma (c₀). Vseeno pa smo iz previdnosti svetovali redno spremljanje koncentracije ciklosporina tudi v prihodnje. S programom DoseMe® smo koncentracije ciklosporina v krvki pacientke uspešno dvignili nad spodnjo mejo terapevtskega območja.

PRIMER 8

Preglednica XXVI: Primer 8 – osnovni podatki.

<table>
<thead>
<tr>
<th>spol: moški</th>
<th>starost: 55 let</th>
<th>TM [kg]: 95</th>
<th>TV [cm]: 174</th>
</tr>
</thead>
</table>

indikacija za ciklosporin: granulomatozni miozitis
priporočeno terapevsko območje za ciklosporin [μg/L] – C₀: 150

začetek zdravljenja s ciklosporinom: 1.6.2016
izbrana formulacija ciklosporina: Sandimmun Neoral
odmerni režim ciklosporina pred pričetkom študije: 2 x 100 mg
sočasna terapija z ZU v interakciji s ciklosporinom: alopurinol 100 mg, metilprednizolon 36 mg

opazovalno obdobje:

Preglednica XXVII: Primer 8 – opazovalno obdobje.

<table>
<thead>
<tr>
<th>DATUM</th>
<th>KONC. CIKLOSPORINA V KRVI [μg/L]</th>
<th>PRIPOROČEN ODMERNI REŽIM [mg]</th>
<th>IZBRAN ODMERNI REŽIM [mg]</th>
<th>SPREMENBE V SOČASNI TERAPIJI (relevantne ZU)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>C₀</td>
<td>C₂</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30.6.2016</td>
<td>86</td>
<td>/</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19.7.2016</td>
<td>68</td>
<td>/</td>
<td></td>
<td>(2 x 100)</td>
</tr>
<tr>
<td>16.8.2016</td>
<td>78</td>
<td>/</td>
<td></td>
<td>(2 x 100)</td>
</tr>
<tr>
<td>19.9.2016</td>
<td>58</td>
<td>/</td>
<td></td>
<td>začasna prekinitev zdravljenja</td>
</tr>
</tbody>
</table>
Slika 20: Primer 8 – izsek koncentracijskega profila (DoseMe® simulacija) – opazovalno obdobje.

Pacient prejema ciklosporin zaradi granulomatoznega mizitisa, njegovo zdravljenje se spremlja ambulantno (Revmatološka ambulanta). Pacient je imel v opazovalnem obdobju redne meritve ciklosporina v krvi, vendar pa je njegov lečeči zdravnik terapijo pregledal le na vsake 3 mesece, ko je bil pacient naročen na kontrolo. V vmesnem obdobju določitev ciklosporina ni spremljal nihče. Izmerjene koncentracije niso popolnoma dosegale ciljane koncentracije, vendar so bile vsaj znotraj terapevtskega območja za avtoimunske bolezni.

Opazimo tudi nihanje izmerjenih koncentracij, kar lahko najverjetneje pripišemo časovno nenatančnim odvzemom vzorca. Od učinkov, ki lahko vplivajo na koncentracijo ciklosporina, je v pacientovi sočasi terapiji ostal le metilprednizolon, saj je bil alopurinol ob začetku opazovalnega obdobja ukinjen. Metilprednizolon je bil v začetku predpisano v visokem odmerku, ki bi potencialno lahko povišal koncentracijo ciklosporina, vendar je bil kasneje znižan na nižji odmerek. Iz izpolnjenega vprašalnika smo izvedeli, da pacient svoje zdravilo zelo dobro pozna in ve, da je uživanje grenivk in šentjanževke ob sočasnem jemanju ciklosporina odsvetovano. Izvedeli smo tudi, da ima pacient težave z neželenimi učinki in sicer opaža zamegljen vid, mišične krče, nemoč v rokah, zatekanje dlesn, rane v ustih. Zaradi omenjenih težav se je zdravnik ob koncu opazovalnega obdobja odločil za začasno prekinitve zdravljenja s ciklosporinom, vsaj dokler ne izzvenijo težave z dlesnimi in usti.
intervencijsko obdobje:

Preglednica XXVIII: Primer 8 – intervencijsko obdobje.

<table>
<thead>
<tr>
<th>DATUM</th>
<th>KONC. CIKLOSPORINA V KRVI [μg/L]</th>
<th>PRIPOROČEN ODMERNI REŽIM [mg]</th>
<th>IZBRAN ODMERNI REŽIM [mg]</th>
<th>SPREMEMBE V SOČASNI TERAPIJI (relevantne ZU)</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.10.2016</td>
<td>C0: /</td>
<td>/</td>
<td>/</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>ciklosporin se uvede nazaj</td>
<td>/</td>
<td></td>
</tr>
<tr>
<td>14.10.2016</td>
<td>2 x 100</td>
<td>/</td>
<td>2 x 100</td>
<td></td>
</tr>
<tr>
<td>10.11.2016</td>
<td>2 x 100</td>
<td>/</td>
<td>2 x 100</td>
<td></td>
</tr>
<tr>
<td>1.12.2016</td>
<td>2 x 100</td>
<td>/</td>
<td>2 x 100</td>
<td></td>
</tr>
<tr>
<td>16.12.2016</td>
<td>100 + 75</td>
<td>/</td>
<td>100 + 75</td>
<td>uvede se kandesartan</td>
</tr>
</tbody>
</table>

Slika 21: Primer 8 – izsek koncentracijskega profila (DoseMe® simulacija) – intervencijsko obdobje.

Ob ponovni uvedbi ciklosporina smo zdravljenje nadaljevali v enakem odmerku kot pred prekinitvijo. Ob vsaki meritvi ciklosporina smo s pomočjo programa DoseMe® pripravili priporočilo, ki je bilo vsakič tudi sprejeto. Izmerjene vrednosti ciklosporina so bile v intervencijskem obdobju bližje ciljani vrednosti, vendar pa je ponovno prišlo do neželenih učinkov in poslabšanja rezultatov laboratorijskih preiskav. Pacient je tožil o slabšem počutju, slabšanju vida, krčih v mišicah, prišlo pa je tudi do povišanja krvnega tlaka. Med laboratorijskimi vrednostmi smo opazili povišanje serumskega kreatinina in znižanje ocene glomerulne filtracije. Znižane so bile tudi vrednosti serumskega magnezija. Ob zadnji meritvi je bila koncentracija ciklosporina višja v primerjavi s predhodnimi določitvami, zato smo se odločili za znižanje odmerka in priporočili odmerjanje 100 mg zjutraj + 75 mg zvečer. Priporočilo je bilo sprejeto. Predlagali smo redne kontrole ciklosporina v krvi ter po potrebi še dodatno znižanje odmerka. Priporočili smo tudi redno spremljanje rezultatov laboratorijskih preiskav.

43
PRIMER 9

Preglednica XXIX: Primer 9 – osnovni podatki.

<table>
<thead>
<tr>
<th>spol: moški</th>
<th>starost: 61 let</th>
<th>TM [kg]: 102</th>
<th>TV [cm]: 182</th>
</tr>
</thead>
<tbody>
<tr>
<td>indikacija za ciklosporin: polimiozitis</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>priporočeno terapevtsko območje za ciklosporin [µg/L] – C₀: 150</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>izbrana formulacija ciklosporina: Sandimmun Neoral</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>odmerni režim ciklosporina pred pričetkom študije: 125 mg + 100 mg</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>sočasna terapija z ZU v interakciji s ciklosporinom: glipizid 5 mg, metilprednizolon izmenjaje 4 mg in 2 mg, atorvastatin 20 mg</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

opazovalno obdobje:

Preglednica XXX: Primer 9 – opazovalno obdobje.

<table>
<thead>
<tr>
<th>DATUM</th>
<th>KONC. CIKLOSPORINA V KRVI [µg/L]</th>
<th>PRIPOROČEN ODMERNI REŽIM [mg]</th>
<th>IZBRAN ODMERNI REŽIM [mg]</th>
<th>SPREMEMBE V SOČASNI TERAPIJI (relevantne ZU)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>C₀</td>
<td>C₂</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20.6.2016</td>
<td>83</td>
<td></td>
<td></td>
<td>125 + 100</td>
</tr>
<tr>
<td>8.9.2016</td>
<td></td>
<td></td>
<td></td>
<td>125 + 100</td>
</tr>
</tbody>
</table>

Slika 22: Primer 9 – izsek koncentracijskega profila (DoseMe® simulacija) – opazovalno obdobje.

Pacient prejema ciklosporin zaradi polimiozitisa, zdravljenje se vodi ambulantno (Revmatološka ambulanta). V opazovalnem obdobju je bila pri pacientu koncentracija ciklosporina v treh mesecih izmerjena le enkrat. Ob kontroli v septembru je zdravnik nadaljeval zdravljenje v enakem odmernem režimu brez informacije o koncentraciji ciklosporina. V patientovi sočasni terapiji smo opazili neustrezno izbiro statina. V zadnjem mesecu opazovalnega obdobja je bil v terapijo dodan alopurinol, kar se je v
začetku intervencijskega obdobja pokazalo na višji izmerjeni koncentraciji ciklosporina. Dodatno pacient v terapiji prejema tudi metilprednizolon in glipizid, katerih vpliv na koncentracijo ciklosporina je že zajet ob meritvi. Iz izpolnjenega vprašalnika smo izvedeli, da pacient ne uživa grenivk ali šentjanževke, prav tako ne opaža neželenih učinkov, vendar pa približno dvakrat na mesec pozabi vzeti svoj večerni odmerek zdravila. Program DoseMe® je dobro simuliral pacientov koncentracijski profil.

intervencijsko obdobje:

Preglednica XXXI: Primer 9 – intervencijsko obdobje.

<table>
<thead>
<tr>
<th>DATUM</th>
<th>KONC. CIKLOSPORINA V KRVI [μg/L]</th>
<th>PRIPOROČEN ODMERNI REŽIM [mg]</th>
<th>IZBRAN ODMERNI REŽIM [mg]</th>
<th>SPREMEMBE V SOČASNI TERAPIJI (relevantne ZU)</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.10.2016</td>
<td>/ / / /</td>
<td>/</td>
<td>/</td>
<td>atorvastatin se zamenja za rosuvastatin 5 mg</td>
</tr>
<tr>
<td>14.10.2016</td>
<td>125 454</td>
<td>2 x 100</td>
<td>2 x 100</td>
<td>/</td>
</tr>
<tr>
<td>1.12.2016</td>
<td>90 / 125 + 100</td>
<td>2 x 100</td>
<td>/</td>
<td></td>
</tr>
</tbody>
</table>

![Slika 23: Primer 9 – izsek koncentracijskega profila (DoseMe® simulacija) – intervencijsko obdobje.](image)

Konzentracija ciklosporina je bila v intervencijskem obdobju izmerjena dvakrat, enkrat smo se dogovorili tudi za meritev c_2. Ob prvi meritvi je bila koncentracija ciklosporina višja kot v opazovalnem obdobju, kar bi lahko bila posledica uvedbe alopurinola. Kljub temu je bila vrednost še vedno sprejemljiva, zato odmerjanja nismo spreminjali, ampak smo priporočili nadaljevanje zdravljenja v enakem odmernem režimu. Ob naslednji meritvi pa je prišlo do znižanja koncentracije ciklosporina, kljub nespremenjenemu odmerku. Rezultat meritve smo vnesli v program DoseMe® in predlagali povišanje jutranjega odmerka na 125 mg. Priporočilo ni bilo sprejeto, saj je zdravnik bolnikovo stanje označil.
kot stabilno in ni želel po nepotrebnem zviševati odmerka. O neustrezni izbiri statina smo opozorili zdravnika in predlagali zamenjavo za rosuvastatin 5 mg. Naše priporočilo je bilo sprejeto. Pacient je zdravljenje dobro prenašal, tudi rezultati laboratorijskih preiskav so bili brez posebnosti.

PRIMER 10

Preglednica XXXII: Primer 10 – osnovni podatki.

<table>
<thead>
<tr>
<th>spol: ženski</th>
<th>starost: 71</th>
<th>TM [kg]: 66</th>
<th>TV [cm]: 160</th>
</tr>
</thead>
<tbody>
<tr>
<td>indikacija za ciklosporin: dermatomiozitis</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>priporočeno terapevtsko območje za ciklosporin [μg/L] – C₀: 150</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>izbrana formulacija ciklosporina: Sandimmun Neoral</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>odmerni režim ciklosporina pred pričetkom študije: 2 x 50 mg</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>sočasna terapija z ŽU v interakciji s ciklosporinom: metilprednizolon 4 mg, omeprazol 40 mg</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

opazovalno obdobje: /

intervencijsko obdobje:

Preglednica XXXIII: Primer 10 – intervencijsko obdobje.

<table>
<thead>
<tr>
<th>DATUM</th>
<th>KONC. CIKLOSPORINA V KRVI [μg/L]</th>
<th>PRIPOROČEN ODMERNI REŽIM [mg]</th>
<th>IZBRAN ODMERNI REŽIM [mg]</th>
<th>SPREMEMBE V SOČASNI TERAPIJI (relevantne ŽU)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>C₀</td>
<td>C₂</td>
<td></td>
<td></td>
</tr>
<tr>
<td>27.9.2016</td>
<td>63</td>
<td>/</td>
<td>/</td>
<td>2 x 50</td>
</tr>
<tr>
<td>30.11.2016</td>
<td>56</td>
<td>342</td>
<td>75 + 50</td>
<td>2 x 50</td>
</tr>
<tr>
<td>27.12.2016</td>
<td>64</td>
<td>/</td>
<td>100 + 75</td>
<td>(2 x 50)</td>
</tr>
</tbody>
</table>

Slika 24: Primer 10 – izsek koncentracijskega profila (DoseMe® simulacija) – intervencijsko obdobje.

Pacientki je bilo zdravljenje s ciklosporinom uvedeno že v januarju 2016, vendar vse do konca septembra ni imela niti ene meritve koncentracije ciklosporina. V našo študijo smo jo tako lahko vključili šele v intervencijskem obdobju, ko je bila hospitalizirana zaradi
nadaljnje obravnavi in optimizacije terapije. Indikacija za katero prevaja ciklosporin je
dermatomiozitis, vendar so izmerjene vrednosti ciklosporina bistveno nižje od
priporočenih. Tudi nobena potencialna interakcija se ni izkazala kot klinično pomembna.
Ves čas intervencijskega obdobja smo se s podporo programa DoseMe® trudili zvišati
odmerek ciklosporina, vendar nobeno naše priporočilo ni bilo sprejeto. Od lečečega
zdravnika smo izvedeli, da razmišljajo o ukinitvi ciklosporina, saj zdravljenje naj ne bi
imelo koristi. Glede na nizke odmerke in posledično prenizke koncentracije ciklosporina v
krvi je lahko tudi to vzrok za neučinkovitost. Pacientka je v vprašalniku navedla, da ne
uživa grenivk ali pripravkov iz šentjanževke, prav tako ne opaža neželenih učinkov.
Program DoseMe® je uspešno napovedal koncentracije ciklosporina v krvi pacientke in z
njegovo uporabo bi lahko ustrezno optimizirali odmerek.

PRIMER 11

Preglednica XXXIV: Primer II – osnovni podatki.

<table>
<thead>
<tr>
<th>spol: moški</th>
<th>starost: 62 let</th>
<th>TM [kg]: 85</th>
<th>TV [cm]: 176</th>
</tr>
</thead>
<tbody>
<tr>
<td>indikacija za ciklosporin: aplastična anemija</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>priporočeno terapevtsko območje za ciklosporin [μg/L] – C₀: 150 – 200</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>začetek zdravljenja s ciklosporinom: 12.2.2016</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>izbrana formulacija ciklosporina: Sandimmun Neoral</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>odmerni režim ciklosporina pred pričetkom študije: 150 mg + 100 mg</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>sočasna terapija z ZU v interakciji s ciklosporinom: /</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

opazovalno obdobje:

Preglednica XXXV: Primer II – opazovalno obdobje.

<table>
<thead>
<tr>
<th>DATUM</th>
<th>KONC. CIKLOSPORINA V KRVI [μg/L]</th>
<th>PRIPOROČEN ODMERNI REŽIM [mg]</th>
<th>IZBRAN ODMERNI REŽIM [mg]</th>
<th>SPREMEMBE V SOČASNI TERAPIJI (relevantne ZU)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>C₀</td>
<td>C₂</td>
<td>/</td>
<td>2 x 100</td>
</tr>
<tr>
<td>23.6.2016</td>
<td>221</td>
<td>638</td>
<td>/</td>
<td>2 x 100</td>
</tr>
<tr>
<td>21.7.2016</td>
<td>168</td>
<td>312</td>
<td>/</td>
<td>2 x 100</td>
</tr>
<tr>
<td>18.8.2016</td>
<td>169</td>
<td>463</td>
<td>/</td>
<td>2 x 100</td>
</tr>
<tr>
<td>15.9.2016</td>
<td>191</td>
<td>446</td>
<td>/</td>
<td>2 x 100</td>
</tr>
</tbody>
</table>

intervencijsko obdobje:

Preglednica XXXVI: Primer 11 – interventično obdobje.

<table>
<thead>
<tr>
<th>DATUM</th>
<th>KONC. CIKLOSPORINA V KRVI [μg/L]</th>
<th>PRIPOROČEN ODMERNI REŽIM [mg]</th>
<th>IZBRAN ODMERNI REŽIM [mg]</th>
<th>SPREMEMBE V SOČASNI TERAPIJI (relevantne ZU)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>C₀</td>
<td>C₂</td>
<td>2 x 75</td>
<td>100 + 50</td>
</tr>
<tr>
<td>13.10.2016</td>
<td>270</td>
<td>585</td>
<td>2 x 75</td>
<td>100 + 50</td>
</tr>
<tr>
<td>27.10.2016</td>
<td>100</td>
<td>389</td>
<td>2 x 100</td>
<td>2 x 100</td>
</tr>
<tr>
<td>24.11.2016</td>
<td>169</td>
<td>430</td>
<td>2 x 100</td>
<td>2 x 100</td>
</tr>
<tr>
<td>22.12.2016</td>
<td>175</td>
<td>/</td>
<td>2 x 100</td>
<td>2 x 100</td>
</tr>
</tbody>
</table>
4.2 NAPovedna vrednost programa DoseMe®

Skozi celotno študijo smo poskušali ugotoviti, ali bi bilo potrebno za spremljanje zdravljenja s ciklosporinom v redni klinični praksi obdržati meritve c₀ in c₂ ali pa je določitev zgolj c₀ dovolj. V ta namen smo se odločili preveriti kakšna je razlika v izračunanem priporočenem odmerku (v programu DoseMe®), če smo pacientu določali zgolj c₀ ali pa c₀ in c₂. Pri pacientih, pri katerih smo spremljali tako c₀ kot tudi c₂, smo zato ob vsaki novi določitvi koncentracije izračunali priporočen odmerek na dva načina, z
upoštevanjem samo izmerjene c_0 ter z upoštevanjem izmerjenih c_0 in c_2. Ciljana koncentracija je bila v obeh primerih enaka. Rezultati so podani v naslednji preglednici (Preglednica XXXVII).

Preglednica XXXVII: Izračun priporočenega odmerka v programu DoseMe® z upoštevanjem zgolj c_0 ali c_0 in c_2.

<table>
<thead>
<tr>
<th>PACIENT</th>
<th>PRIPOROČEN ODMEREK z upoštevanjem zgolj c_0 [mg/12 h]</th>
<th>PRIPOROČEN ODMEREK z upoštevanjem c_0 in c_2 [mg/12 h]</th>
</tr>
</thead>
<tbody>
<tr>
<td>patient 1</td>
<td>92</td>
<td>95</td>
</tr>
<tr>
<td>patient 2</td>
<td>99</td>
<td>99</td>
</tr>
<tr>
<td>patient 3</td>
<td>104</td>
<td>108</td>
</tr>
<tr>
<td>patient 4</td>
<td>101</td>
<td>98</td>
</tr>
<tr>
<td>patient 5</td>
<td>62</td>
<td>59</td>
</tr>
<tr>
<td>patient 6</td>
<td>150</td>
<td>156</td>
</tr>
<tr>
<td>patient 7</td>
<td>114</td>
<td>127</td>
</tr>
<tr>
<td>patient 8</td>
<td>60</td>
<td>58</td>
</tr>
</tbody>
</table>

Da bi ugotovili, ali obstaja statistično značilna razlika v priporočenem odmerku, če je le ta izračunan upoštevajoč c_0 in c_2 ali zgolj c_0, smo naše rezultate statistično analizirali. Ker smo pri testiranju normalnosti porazdelitve naše spremenljivke ugotovili, da je normalno porazdeljena, smo za primerjavo obeh vzorcev uporabili parni t-test, s katerim smo ugotovili, da med vzorcema ni statistično značilne razlike. Izbrani statistični testi ter rezultati statistične analize so prikazani v preglednici XXXVIII.

Preglednica XXXVIII: Statistični testi in rezultati – primerjava izračunanega priporočenega odmerka.

<table>
<thead>
<tr>
<th>STATISTIČNI TEST</th>
<th>HIPOTEZE</th>
<th>REZULTAT (p-vrednost)</th>
<th>INTERPRETACIJA REZULTATA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kolmogorov – Smirnov test</td>
<td>H_0: porazdelitev je normalna</td>
<td>C_0 = 0,200; C_0 in C_2 = 0,200</td>
<td>H_0 ne moremo zavreči, privzamemo da velja</td>
</tr>
<tr>
<td>Shapiro – Wilk test</td>
<td>H_0: porazdelitev ni normalna</td>
<td>C_0 = 0,469; C_0 in C_2 = 0,549</td>
<td>H_0 ne moremo zavreči, privzamemo da velja</td>
</tr>
<tr>
<td>parni t-test</td>
<td>H_0: $μ_1 = μ_2$; H_a: $μ_1 ≠ μ_2$</td>
<td>C_0 = 0,285</td>
<td>H_0 ne moremo zavreči, privzamemo da velja</td>
</tr>
</tbody>
</table>

4.3 PRIMERJAVA REZULTATOV RAZLIČNIH ANALIZNIH METOD
Kot je bilo že omenjeno, smo v nalogi poskušali preveriti tudi primerljivost analiznih metod za določevanje ciklosporina v UKC Maribor in UKC Ljubljana. Na Oddelku za
laboratorijsko diagnostiko UKC Maribor so zato določeno število vzorcev analizirali po metodi CEDIA Plus, ki jo za določitev ciklosporina uporabljajo pri vsakdanjem delu ter po metodi CMIA, s katero ciklosporin določajo v UKC Ljubljana (Klinika za nuklearn medicino). Pri tem je potrebno omeniti, da uporabljen analizator ni popolnoma identičen tistem, ki ga uporabljajo v UKC Ljubljana, vendar je metoda določitve ciklosporina enaka. Rezultati so podani v preglednici XXXIX in na sliki 27.

Preglednica XXXIX: Rezultati primerjave določitve ciklosporina z metodama CEDIA Plus in CMIA.

<table>
<thead>
<tr>
<th>VZOREC</th>
<th>CEDIA Plus koncentracija ciklosporina [μg/L]</th>
<th>CMIA koncentracija ciklosporina [μg/L]</th>
</tr>
</thead>
<tbody>
<tr>
<td>vzorec 1</td>
<td>63,0</td>
<td>97,5</td>
</tr>
<tr>
<td>vzorec 2</td>
<td>788,0</td>
<td>1188,7</td>
</tr>
<tr>
<td>vzorec 3</td>
<td>166,5</td>
<td>270,7</td>
</tr>
<tr>
<td>vzorec 4</td>
<td>744,0</td>
<td>1218,1</td>
</tr>
<tr>
<td>vzorec 5</td>
<td>145,0</td>
<td>175,9</td>
</tr>
<tr>
<td>vzorec 6</td>
<td>118,5</td>
<td>200,9</td>
</tr>
<tr>
<td>vzorec 7</td>
<td>302,0</td>
<td>463,2</td>
</tr>
<tr>
<td>vzorec 8</td>
<td>179,0</td>
<td>230,4</td>
</tr>
<tr>
<td>vzorec 9</td>
<td>72,0</td>
<td>142,8</td>
</tr>
<tr>
<td>vzorec 10</td>
<td>39,0</td>
<td>63,7</td>
</tr>
<tr>
<td>vzorec 11</td>
<td>58,5</td>
<td>105,7</td>
</tr>
<tr>
<td>vzorec 12</td>
<td>52,0</td>
<td>59,9</td>
</tr>
<tr>
<td>vzorec 13</td>
<td>120,5</td>
<td>191,7</td>
</tr>
<tr>
<td>vzorec 14</td>
<td>500,0</td>
<td>635,6</td>
</tr>
<tr>
<td>vzorec 15</td>
<td>88,5</td>
<td>160,5</td>
</tr>
<tr>
<td>vzorec 16</td>
<td>95,5</td>
<td>180,6</td>
</tr>
<tr>
<td>vzorec 17</td>
<td>41,5</td>
<td>79,6</td>
</tr>
<tr>
<td>vzorec 18</td>
<td>51,0</td>
<td>112,3</td>
</tr>
<tr>
<td>vzorec 19</td>
<td>135,0</td>
<td>235,7</td>
</tr>
<tr>
<td>vzorec 20</td>
<td>674,0</td>
<td>1029,8</td>
</tr>
<tr>
<td>vzorec 21</td>
<td>69,5</td>
<td>114,7</td>
</tr>
<tr>
<td>vzorec 22</td>
<td>27,0</td>
<td>31,4</td>
</tr>
<tr>
<td>vzorec 23</td>
<td>52,0</td>
<td>63,6</td>
</tr>
<tr>
<td>vzorec 24</td>
<td>165,0</td>
<td>250,2</td>
</tr>
<tr>
<td>vzorec 25</td>
<td>644,0</td>
<td>1219,1</td>
</tr>
<tr>
<td>vzorec 26</td>
<td>77,5</td>
<td>117,4</td>
</tr>
<tr>
<td>vzorec 27</td>
<td>584,0</td>
<td>841,5</td>
</tr>
<tr>
<td>vzorec 28</td>
<td>102,5</td>
<td>146,2</td>
</tr>
<tr>
<td>vzorec 29</td>
<td>111,0</td>
<td>166,1</td>
</tr>
<tr>
<td>vzorec 30</td>
<td>373,0</td>
<td>608,9</td>
</tr>
<tr>
<td>vzorec 31</td>
<td>81,5</td>
<td>111,5</td>
</tr>
<tr>
<td>vzorec 32</td>
<td>126,0</td>
<td>194,7</td>
</tr>
</tbody>
</table>
Slika 27: Grafični prikaz rezultatov določitve ciklosporina z metodama CEDIA Plus in CMIA.

Preglednica XL: Statistični testi in rezultati – primerjava dveh analiznih metod.

<table>
<thead>
<tr>
<th>STATISTIČNI TEST</th>
<th>HIPOTEZE</th>
<th>REZULTAT (p-vrednost)</th>
<th>INTERPRETACIJA REZULTATA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kolmogorov – Smirnov test</td>
<td>H₀: porazdelitev je normalna</td>
<td>CEDIA Plus: 0,000 CMIA: 0,000</td>
<td>H₀ zavržemo, sprejmemo Hₐ</td>
</tr>
<tr>
<td>Shapiro – Wilk test</td>
<td>H₀: porazdelitev je normalna</td>
<td>CEDIA Plus: 0,000 CMIA: 0,000</td>
<td>H₀ zavržemo, sprejmemo Hₐ</td>
</tr>
<tr>
<td>Wilcoxonov test predznačenih rangov</td>
<td>H₀: μ₁ = μ₂ Hₐ: μ₁ ≠ μ₂</td>
<td>CEDIA Plus: 0,000 CMIA: 0,000</td>
<td>H₀ zavržemo, sprejmemo Hₐ</td>
</tr>
</tbody>
</table>

Za informacijo o dejanski primerljivosti rezultatov določitve ciklosporina med UKC Maribor in UKC Ljubljana, smo se dogovorili, da nekaj posameznih vzorcev pošljemo na analizo v Ljubljano. Da bi ugotovili katera metoda daje pravilnejše vrednosti, smo dodatno te iste vzorce poslali tudi v LKH-Univ. Klinikum Graz, kjer določitev ciklosporina poteka
s kromatografsko metodo. Teh rezultatov nismo statistično analizirali in imajo zgolj informativen namen. Prikazani so v spodnji preglednici (Preglednica XLI).

Preglednica XLI: Primerjava rezultatov določitve ciclosporina med UKC MB, UKC LJ in LKH-Univ. Klinikum Graz.

<table>
<thead>
<tr>
<th>VZOREC</th>
<th>UKC MB (CEDIA Plus)</th>
<th>UKC LJ (CMIA)</th>
<th>LKH-UNIV. KLINIKUM GRAZ (LC-MS/MS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>vzorec 1</td>
<td>90,0</td>
<td>119,4</td>
<td>102,2</td>
</tr>
<tr>
<td>vzorec 2</td>
<td>128,0</td>
<td>142,4</td>
<td>155,9</td>
</tr>
<tr>
<td>vzorec 3</td>
<td>65,0</td>
<td>49,4</td>
<td>49,1</td>
</tr>
<tr>
<td>vzorec 4</td>
<td>56,0</td>
<td>28,5</td>
<td>27,5</td>
</tr>
<tr>
<td>vzorec 5</td>
<td>342,0</td>
<td>371,2</td>
<td>356,0</td>
</tr>
</tbody>
</table>
5 RAZPRAVA

5.1 PRIMERI PACIENTOV

Skozì celotno študijo smo spremljali in optimizirali zdravljenje 11 pacientov. Nekaterim je bilo zdravljenje še pred zaključkom študije ukinjeno, spet drugi pa so bili v študijo vključeni šele naknadno. Ker se vsi pacienti s presajenimi organi vodijo v UKC Ljubljana, so bile glavne indikacije naših pacientov avtoimunske bolezni. Pacienti so prihajali s treh oddelkov: Oddelek za nefrologijo, Oddelek za revmatologijo ter Oddelek za hematologijo in hematološko onkologijo. Zdravljenje vključenih pacientov je bilo vedeno ambulantno, hospitalizirani so bili le v primeru uvedbe terapije ali v primeru poslabšanj. Tako so bili v šestih mesecih študije hospitalizirani le trije pacienti, v vseh treh primerih je šlo za uvedbo oziroma optimizacijo zdravljenja.

Med opazovalnim obdobjem smo zasledili kar precej pomanjkljivosti glede zdravljenja s ciklosporinom v UKC Maribor. Glavni problem, s katerim smo se srečali, so bile neredne kontrole pri lečečem zdravniku. Večkrat se je zgodilo, da je pacient dobil napotnico za določitev koncentracije ciklosporina v krvi, rezultata meritve pa nato lečeči zdravnik ni preveril. Posledično se tudi odmerjanje ciklosporina ni spremenilo, kljub morebitni neustrezni koncentraciji. Prav tako smo zasledili tudi pomanjkanje informacij o ustreznih terapevtskih območjih, zlasti v primeru avtoimunskih bolezni. Dodatno smo predvsem na Oddelku za revmatologijo opazili trend nizkih koncentracij ciklosporina v krvi, četudi pacienti niso imeli težav z neželenimi učinki in bi glede na priporočena območja potrebovali višje odmerke. Zaradi ambulantnega spremljanja zdravljenja se je večkrat zgodilo, da je pacient opravil controlo vsakič pri drugem zdravniku in tako so se pogosto določene informacije vmes izgubile. Opazovalno obdobje je izpostavilo tudi dva velika problema pri zdravljenju s ciklosporinom, in sicer sočasno uživanje grenivke ter neustrezen izbor statina. Večina pacientov, ki so v svoji terapiji potrebovali statin, je namreč imela predpisane neustrezen statini ali preveliki odmerek glede na sočasno zdravljenje s ciklosporinom. Izkazalo pa se je tudi nepoznavanje interakcije med ciklosporinom in grenivko.

V intervencijskem obdobju smo tako pogosto opozarjali na morebitne interakcije, še posebej glede statinov. V ta namen smo pripravili seznam primernih statinov in največjih dovoljenih odmerkov, tako zdravnike kot tudi paciente pa smo opozorili na pomembnost interakcije z grenivko. Glavni cilj intervencijskega obdobja je bila optimizacija zdravljenja s ciklosporinom, pri čemer smo uporabljali farmakokinetični program DoseMe®. Pri večini
pacientov smo s pomočjo programa vzdrževali že ustaljeno zdravljenje, v nekaterih primerih pa smo morali s programom izračunati potreben odmerek za zvišanje koncentracije ciklosporina ali ukrepati ob nenadni previsoki koncentraciji. V začetku smo imeli problem, kako izvedeti za novo meritev koncentracije ciklosporina pri posameznem pacientu, nato pa smo se postopno začeli dogovarjati z zdravniki, da so nas ob novi meritvi obvestili in počakali na naše priporočilo. Skoraj vsa priporočila, ki smo jih pripravili, so bila s strani zdravnikov sprejeta. Cilj študije je bil vzpostaviti dobro sodelovanje, ki bi se obdržalo tudi po koncu študije.

5.2 FARMAKOKINETIČNI PROGRAM DoseMe®
Farmakokinetični program DoseMe® se je izkazal kot uporaben pripomoček pri optimizaciji zdravljenja s ciklosporinom. V večini primerov je ustrezno napovedal koncentracijo ciklosporina v krvi in omogočil izračun optimalnega odmerka. Težava se je pojavila le v primeru nepričakovanih izredno visokih ali nizkih koncentracij, saj takrat program teh meritev ni uspešno vključil v koncentracijski profil in posledično tudi napoved koncentracije ni bila ustrezen. Dodatno smo v programu pogrešali možnost izključitve določenih meritev ciklosporina iz koncentracijskega profila, tako da bi se lahko krivulja prilagodila zgolj na preostale relevantne koncentracije. Zdaj smo lahko manj relevantne meritve zgolj izbrisali, s tem pa smo jih odstranili tudi iz pacientove zgodovine. Nekoliko več dela je potrebnega tudi pri izračunu priporočenega odmerka, saj program ne omogoča ločenega izračuna za jutranji in večerni odmerek. Odmerek, ki ga program izračuna, tako pogosto ne moremo zagotoviti z jakostmi, ki jih imamo na voljo v Sloveniji in takrat je potrebno malo prilagajanj. Kljub temu pa smo s programom DoseMe® uspešno spremljali in prilagajali zdravljenje vključenih pacientov.

Statistična analiza, ki smo jo izvedli in pri kateri smo primerjali izračunan priporočen odmerek ob upoštevanju zgolj c₀ ali c₀ in c₂ je pokazala, da med obema izračunanimi odmerki ne obstaja statistično pomembna razlika. S tem smo pokazali, da je v programu DoseMe® izračunan odmerek enak, če pri pacientu spremljamo zgolj c₀ ali pa opravljamo meritve c₀ in c₂. To je bil dodaten argument, da smo za delo v redni klinični praksi merjenje c₂ opustili.
5.3 PRIMERJAVA REZULTATOV RAZLIČNIH ANALIZNIH METOD

Ker te ugotovitve nismo želeli kar tako posplošiti na primerljivost rezultatov med UKC Maribor in UKC Ljubljana, smo se dogovorili, da nekaj vzorcev pošljemo na določitev v Ljubljano. Da bi sočasno preverili še katere metoda daje pravilnejše rezultate, smo iste vzorce poslali tudi v LKH-Univ. Klinikum Graz, kjer določitev poteka s kromatografsko metodo. Primerjava teh rezultatov je pokazala, da med rezultati določenimi v UKC Maribor in UKC Ljubljana ne obstaja tako velika razlika, kot bi lahko sklepali na podlagi primerjave, ki smo jo prvotno izvedli v UKC Maribor. Morda so bile razlike ob prvotni primerjavi večje, ker dejansko ni šlo za popolnoma enak analizator, kot ga uporabljajo na Kliniki za nuklearno medicino UKC Ljubljana. Možen vzrok bi lahko bilo tudi pomanjkanje izkušenj pri določitvi ciklosporina z analizatorjem Abbott Architect i4000 SR, saj v UKC Maribor za določitev ciklosporina v redni klinični praksi uporabljajo zgolj analizator Thermoscientific Indiko Plus. Dodatno omejitev pri prvotni primerjavi predstavljajo še uporabljeni vzorci, ti namreč niso bili sveži, nekateri so bili zamrznjeni tudi mesec dni.

V splošnem so bili rezultati določitve ciklosporina v UKC Maribor, UKC Ljubljana in LKH-Univ. Klinikum Graz primerljivi. Nekoliko boljše korelacijo lahko opazimo med kromatografsko metodo uporabljeno v LKH-Univ. Klinikum Graz ter metodo CMIA, ki jo pri svojem delu uporabljajo v UKC Ljubljana. Pri metodi CEDIA Plus, ki jo uporabljajo v UKC Maribor, smo opazili dobro ujemanje pri vrednostih okrog 100 μg/L, medtem ko so bile nizke vrednosti nekoliko višje, visoke pa nekoliko nižje v primerjavi z ostalima metodama. Ta podatek nakazuje na pomembnost vpliva kalibracije posameznih metod ter najverjetneje prisotno razliko v kalibraciji med metodo CEDIA Plus in preostalima uporabljenima metodama. Oddelek za laboratorijsko diagnostiko UKC Maribor je o tem
obvestili proizvajalca (Thermo Fisher Scientific Oy, Vantaa, Finland), vendar do sedaj še niso prejeli ustreznega odgovora.

Pri optimizaciji zdravljenja s ciklosporinom smo upoštevali meritve določene z analizatorjem Thermo Scientific Indiko Plus (metoda CEDIA Plus).

5.4 OMEJITVE RAZISKAVE

Ena izmed glavnih omejitev naše raziskave je prav gotovo majhno število pacientov. Ker so bili skoraj vsi pacienti vodeni ambulantno, smo s tem imeli manjši nadzor nad dejanskim jemanjem zdravila pa tudi ob jemanju vzorcev krvi nikoli nismo vedeli, ali smo določili dejanski minimum. Podobno tudi pri določitvi maksimalne koncentracije ciklosporina v krvi nismo vedeli, ali so pacientu vzorec res odvzeli natanko po dveh urah od aplikacije odmerka. Dodatno omejitev predstavlja tudi dejstvo, da je bil uporabljen farmakokinetični model za ciklosporin (v programu DoseMe®) razvit in validiran na populaciji pacientov s presajenimi organi, mi pa smo ga uporabljali za optimizacijo zdravljenja pri pacientih z avtoimunskimi boleznimi.

Tudi zaključki do katerih smo prišli pri primerjavi analiznih metod določanja ciklosporina imajo omejeno moč, saj bi bilo za natančnejše rezultate potrebno izvesti obsežnejšo primerjavo vzorcev, ki bi bili dejansko pomerjeni v UKC Maribor in UKC Ljubljana.
6 SKLEP

Tekom študije smo pregledali obširno literaturo ter navezali stike z nekaterimi strokovnjaki na tem področju, kot so prof. dr. Pierre Marquet, prof. dr. Franck Saint-Marcoux (University of Limoges, Limoges University Hospital) ter Dr. Harald Ertl (Labor Lademannbogen, Hamburg). S pomočjo pridobljenih informacij smo pripravili priporočila za odmerjanje ter priporočena terapevtska območja. Vse podatke smo vključili v protokol za odmerjanje in spremljanje koncentracij ciklosporina v krvi, ki smo ga ob koncu študije tudi uspešno uvedli v redno klinično prakso.
7 LITERATURA

32. Podatkovna baza Micromedex: Cyclosporine.

33. Podatkovna baza UpToDate: Cyclosporine.

87. Thermo Scientific: CEDIA® Cyclosporine PLUS Assay:
89. Architect System: Cyclosporine:
PRILOGE
Seznam prilog:
- Priloga 1: Izjava o zavestni in svobodni privolitvi k sodelovanju v raziskavi
- Priloga 2: Obrazložitev raziskave
- Priloga 3: Navodilo za pacienta
- Priloga 4: Vprašalnik za pacienta
- Priloga 5: Obrazec za zdravnika
- Priloga 6: Protokol za odmerjanje in spremljanje koncentracij ciklosporina v krvi
- Priloga 7: Obrazec za TDM ciklosporina
- Priloga 8: Zloženka za pacienta
- Priloga 9: Primer priporočila iz programa DoseMe®
IZJAVA O ZAVESTNI IN SVOBODNI PRIVOLITVI K SODELOVANJU V RAZISKAVI

Spodaj podpisan-a __________________________ , rojen-a __________________________ , sem v celoti seznanjen-a s potekom raziskave z naslovom

Optimizacija zdravljenja s ciklosporinom v Univerzitetnem kliničnem centru Maribor

in se zavestno in svobodno odločam za sodelovanje v raziskavi.

S podpisom dovoljujem uporabo podatkov v raziskovalne namene.

Podpis: __________________________ Datum in kraj: __________________________
Pozdravljeni, pred Vami je kratka obrazložitev raziskave z naslovom Optimizacija zdravljenja s ciklosporinom v Univerzitetnem kliničnem centru Maribor, v katero ste bili povabljeni, ker prejemate ciklosporin. Raziskava bo potekala v okviru magistrske naloge na Fakulteti za farmacijo Univerze v Ljubljani in jo bo izvedla študentka 5. letnika farmacije Mateja Stopinšek, pod mentorstvom prof. dr. Aleša Mrharja, mag. farm. in somentorstvom Polonce Drofenik, mag. farm., spec. klinične farmacije. Zdravljenje bo kot do sedaj vodeno in nadzorovano s strani Vašega lečečega specialista.

V raziskavi želimo preveriti kako poteka trenutno zdravljenje s ciklosporinom, kakšna so priporočena terapevtska območja, zanima pa nas tudi kakšna je uporabnost računalniškega programa DoseMe® kot pripomočka za napovedovanje koncentracij ciklosporina v krvi. Naš končni cilj je oblikovanje protokola za individualno odmerjanje in spremljanje koncentracij ciklosporina ter njegova implementacija v redno klinično prakso. Ponuditi želimo storitev farmakokinetične podpore, ki bo prispevala k učinkovitemu in varnemu zdravljenju v prihodnje.

Tekom raziskave bomo poskušali pridobiti vse potrebne podatke za ovrednotenje učinkovitosti in varnosti zdravljenja s ciklosporinom, vsi podatki pa bodo tako anonimizirani, s čimer bomo poskrbili za varstvo osebnih podatkov udeležencev. Prav tako sodelovanje v raziskavi za udeležence ne bo predstavljalo večje nevarnosti kot dosedanje zdravljenje, saj bo zdravljenje potekalo na enak način, le da bomo s pomočjo računalniškega programa DoseMe® lahko bolje napovedali koncentracijo zdravila v krvi, s tem prilagodili odmerek in posledično dosegli boljše rezultate zdravljenja. Edina razlika v primerjavi s sedanjim načinom zdravljenja bo občasno dvakratno jemanje krvi (pred in po odmerku), s čimer bomo lahko določili minimalno pa tudi maksimalno koncentracijo zdravila v krvi in s tem bolje prilagodili naslednji odmerek.

Želimo Vas še opomniti, da je Vaše sodelovanje v raziskavi popolnoma prostovoljno. Hkrati pa se Vam želimo zahvaliti, da nam s svojim sodelovanjem omogočate pridobivanje novega znanja in izkušenj ter s tem prispevate k učinkovitemu in varnemu zdravljenju s ciklosporinom.
Priloga 3

NAVODILO ZA PACIENTA

Optimizacija zdravljenja s ciklosporinom v Univerzitetnem kliničnem centru Maribor

Zahvaljujemo se Vam, da ste se odločili za sodelovanje v naši raziskavi (Optimizacija zdravljenja s ciklosporinom v Univerzitetnem kliničnem centru Maribor). V nadaljevanju Vam želimo podati nekaj navodil, kako ravnati ob rednih mesečnih kontrolah.

V času raziskave bodo Vaše mesečne kontrole v laboratoriju in ambulanti potekale po naslednjem režimu:

1. Kot ste vajeni že sedaj, na dan odvzema krvi zjutraj zdravila ne vzemite. Svoj odmerek zdravila prinesite s seboj. Enako kot do sedaj se oglasite v laboratoriju, kjer Vam bodo odvzeli kri, za določitev minimalne koncentracije zdravila v krvi.

2. Po odvzemu krvi boste vzeli svoj odmerek zdravila, pri čemer bodo v laboratoriju zabeležili čas, ko ste zdravilo zaužili.

3. Ko pretečeta 2 uri od časa zaužitja odmerka se ponovno oglasite v laboratoriju, kjer Vam bodo odvzeli kri za določitev maksimalne koncentracije zdravila v krvi.

4. S tem bo Vaša kontrola v laboratoriju zaključena. Tako kot ste naročeni, se potem v naslednjih dneh oglasite pri Vašem zdravniku na redni mesečni kontroli v ambulanti, kjer boste prejeli vsa navodila v zvezi z jemanjem ciklosporina do prihodnje kontrole.

Zavedamo se, da ta novi protokol za Vas pomeni spremembo in dodatno breme, vendar pa nam omogoča pridobivanje pomembnih informacij, s pomočjo katerih bomo poskušali izboljšati tako varnost kot tudi učinkovitost zdravljenja s ciklosporinom in verjamemo, da je to skupen cilj nas vseh. Še enkrat se Vam zahvaljujemo za sodelovanje in Vam želimo čim manj težav pri navajanju na uvedene spremembe.
Pozdravljeni, zahvaljujemo se Vam, da ste se odločili za sodelovanje v naši raziskavi z naslovom Optimizacija zdravljenja s ciklosporinom v Univerzitetnem kliničnem centru Maribor.

Pred Vami je kratak vprašalnik, ki smo ga pripravili z namenom, da bolje spoznamo Vas in Vaša zdravila.

Priimek, ime: ____________________________________

1. V raziskavo smo Vas povabili, ker v svoji terapiji prejemate ciklosporin. Ta učinkovina se nahaja v zdravilih Sandimmun Neoral, Ciqorin in Ciklosporin alkaloid-INT. Prosimo Vas, da obkrožite katero izmed naštetih zdravil prejemate:
 a) Sandimmun Neoral
 b) Ciqorin
 c) Ciklosporin alkaloid-INT

2. Pri prejšnjem vprašanju ste izbrali zdravilo, ki ga prejemate. Sedaj pa Vas prosimo, da nam opišete kdaj in kako to zdravilo jemljete.

3. Pogosto se zgodi, da ljudje kaj pozabimo in zato nas zanima, ali se tudi Vas kdaj zgodi, da pozabite vzeti zdravilo Sandimmun Neoral/Ciqorin/Ciklosporin alkaloid-INT?
 a) Nikoli
 b) Nekajkrat na mesec. (Kolikokrat je to? ________)
 c) Nekajkrat na teden. (Kolikokrat je to? ________)
 d) Drugo: __

4. Ali ste ob jemanju tega zdravila (Sandimmun Neoral/Ciqorin/Ciklosporin alkaloid-INT) opazili kakšne neželene učinke, so se Vas pojavile kakšne težave? Če da, kakšne?

5. Pri zdravljenju s ciklosporinom so potrebne redne kontrole v laboratoriju (odvzem krvi). Zanima nas, kako ravnate zjutraj pred odvzemom krvi?
 a) Pred odvzemom krvi zjutraj normalno vzamem svoje zdravilo (Sandimmun Neoral/Ciqorin/Ciklosporin alkaloid-INT)
 b) Pred odvzemom krvi zjutraj ne vzamem zdravila (Sandimmun Neoral/Ciqorin/Ciklosporin alkaloid-INT).
 c) Drugo: __

6. Ali pogosto uživate grenivke, grenivkin sok? Če da, kako pogosto?
 __
 __

 __
 __

<table>
<thead>
<tr>
<th>PREHRANSKO DOPOLNILO ali ZDRAVILO BREZ RECEPTA</th>
<th>JEMANJE</th>
<th>OPOMBE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Priloga 5

Priimek, ime pacienta:

<table>
<thead>
<tr>
<th>Spol:</th>
<th>Starost:</th>
<th>TV [cm]:</th>
<th>TM [kg]:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Indikacija:

Začetek zdravljenja s ciklosporinom:

Priporočeno terapevtsko območje za ciklosporin [μg/L]:

Sočasne bolezni:

Sočasna terapija: (označite in zraven pripišite jakost, odmerni režim, če je potrebno tudi ZU; spodaj dopišite še ostalo terapijo)

□ alopurinol	□ fenotoin	□ kolhicin	□ okskarbazepin
□ amiodaron	□ fibrati (fenofibrat, gemfibrozil)	□ kontraceptivi (hormonski)	□ oktretid
□ azitromicin	□ barbiturati	□ fibrati (fenofibrat, gemfibrozil)	□ onoprazol
□ ciklofosfamid	□ danazol	□ metilprednizolon	□ rifampicin
□ danazol	□ diltiazem	□ metoklopramid	□ terbinafin
□ erytrmicin	□ karbamazepin	□ mifepriston	□ tikloidin
□ eritromicin	□ klaritromicin	□ modafinil	□ verapamil

Drugo:

| □ azitromicin | □ danazol | □ diltiazem | □ diltiazem |
| □ danazol | □ diltiazem | □ diltiazem | □ diltiazem |

DATUM

<table>
<thead>
<tr>
<th>KONC. CIKLOSPORINA V KRVI [μg/L]</th>
<th>IZBRANA FORMULACIJA IN ODMERNI REŽIM CIKLOSPORINA</th>
<th>SPREMENBE V SOČASNI TERAPIJI</th>
<th>KRNVLJENI TLAK</th>
<th>OPOMBE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Priloga 6

** Protokol za odmerjanje in spremljanje koncentracij ciklosporine v krvi **

ODMERJANJE IN TERAPEVTSKA OBMOČJA

<table>
<thead>
<tr>
<th>INDIKACIJA</th>
<th>ODMERJANJE (v dveh deljenih odmerkih)</th>
<th>TERAPEVTSKO OBMOČJE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>začetno</td>
<td>G<sub>2</sub> [mg/L]</td>
</tr>
<tr>
<td>presaditev ledvice</td>
<td>10 – 15 mg/kg/dan</td>
<td>150 – 250</td>
</tr>
<tr>
<td>presaditev jeter</td>
<td>2 – 6 mg/kg/dan</td>
<td>< 150</td>
</tr>
<tr>
<td>presaditev srca</td>
<td>250 – 350 mg/kg/dan</td>
<td>1000 – 1400</td>
</tr>
<tr>
<td>presaditev pljuč</td>
<td>250 – 350 mg/kg/dan</td>
<td>< 1000</td>
</tr>
<tr>
<td>presaditev parazens</td>
<td>175 – 225 mg/kg/dan</td>
<td>800 – 1200</td>
</tr>
<tr>
<td>presaditev kostnega moza</td>
<td>150 – 250 mg/kg/dan</td>
<td>< 1000</td>
</tr>
<tr>
<td>avtoimunsko bolezni</td>
<td>5 mg/kg/dan</td>
<td>200 – 400</td>
</tr>
<tr>
<td>polnokaozis in dermatomiazis</td>
<td>12,5 mg/kg/dan</td>
<td></td>
</tr>
<tr>
<td>SLE</td>
<td>novočetni odmerek, ki je se učinkovit</td>
<td>50 – 150</td>
</tr>
<tr>
<td>Becheterova bolezen</td>
<td>5 mg/kg/dan</td>
<td>150</td>
</tr>
<tr>
<td>revmatoidni artritis</td>
<td>50 – 150 mg/kg/dan</td>
<td>> 50</td>
</tr>
<tr>
<td>glomerulonefritis</td>
<td>125 – 200 mg/kg/dan</td>
<td>50 – 150</td>
</tr>
<tr>
<td>nefritski sindrom</td>
<td>80 – 120 mg/kg/dan</td>
<td>200 – 400</td>
</tr>
<tr>
<td>aplastična anemija</td>
<td>150 – 200 mg/kg/dan</td>
<td></td>
</tr>
<tr>
<td>endogene uveitis</td>
<td>80 – 150 mg/kg/dan</td>
<td></td>
</tr>
<tr>
<td>psoriasis</td>
<td>< 200 mg/kg/dan</td>
<td></td>
</tr>
<tr>
<td>atopijski dermatitis</td>
<td>ni spec. vrednosti</td>
<td></td>
</tr>
</tbody>
</table>

INTERAKCIJE

<table>
<thead>
<tr>
<th>↓ konce. ciklosp.</th>
<th>↑ konce. ciklosp.</th>
<th>vpliv ciklosp. na konce. zdravil</th>
<th>drugo</th>
</tr>
</thead>
<tbody>
<tr>
<td>barbiturati</td>
<td>sulfadimidin i.v.</td>
<td>alopinol</td>
<td>kolhacin</td>
</tr>
<tr>
<td>bosentan</td>
<td>sulfipirazon</td>
<td>amiodaron</td>
<td>kontraceptivi</td>
</tr>
<tr>
<td>cyclosporin</td>
<td>terbinafin</td>
<td>azitromycin</td>
<td>(hormonski)</td>
</tr>
<tr>
<td>fenitoin</td>
<td>tiofuran</td>
<td>dinaclon</td>
<td>lekarndipin</td>
</tr>
<tr>
<td>fibrati</td>
<td>diltiazem</td>
<td>metildihidrozol</td>
<td>lekarndipin</td>
</tr>
<tr>
<td>karbamazepin</td>
<td>eritromycin</td>
<td>metoklopramid</td>
<td>lekarndipin</td>
</tr>
<tr>
<td>modafinil</td>
<td>fenidozon</td>
<td>nefazodron</td>
<td>lekarndipin</td>
</tr>
<tr>
<td>nafilda</td>
<td>valproat</td>
<td>eptifibat</td>
<td>kriptokin</td>
</tr>
<tr>
<td>olasbarbazepin</td>
<td>antioksidant</td>
<td>fluvonazon</td>
<td>kriptokin</td>
</tr>
<tr>
<td>oltebrozid</td>
<td>intravaskularni</td>
<td>itrajonazol</td>
<td>riyadiskaban</td>
</tr>
<tr>
<td>orlistat</td>
<td>mucoznokotol</td>
<td>norvalnokotol</td>
<td>simvastatin</td>
</tr>
<tr>
<td>protokol</td>
<td>ketokonazol</td>
<td>vorikonazol</td>
<td>totozidol</td>
</tr>
<tr>
<td>rifampcin</td>
<td>klaritromicin</td>
<td>zazivalni proteazi</td>
<td></td>
</tr>
</tbody>
</table>

SPEMRLJANJE KONCENTRACIJ CIKLOSPORINE

Potrebno je redno spremljanje koncentracij ciklosporine v krvi (rutinske mesečne kontrole, kontrole ob spremembi terapije, ob dodajanju drugih učinkov in terapijo ali v primeru neobičajnega kliničnega odziva). Drugi parametri, ki jih moramo spremljati so: ledična funkcija (s-urea, s-kreatinini, očistek kreatinina, oGF), jetna funkcija (s-AST, s-ALT, s-GGT, s-bilirubin), lipid, kalij, magnezij, sečna kisl., krivnji tlak.

VZOREC

Polna kri, odvzeta v evrupto z EDTA; vzorec je lahko shranjen 7 dni na temperaturi 2 – 8°C ali 1 mesec na temperaturi – 20°C. Pomembna podatka sta čas odvzema vzorca in čas zadnje aplikacije zdravila.

ČAS VZORČENJA

POMEMBNI PODATKI

Podatki o pacientu: spol, starost, telesna masa, telesna višina.

Svetovanje in farmakokinetična podpora: Centralna lekarna, Enota za klinično farmacijo (tel.: 2234, 2964, 2791; v dežurstvu: 040 631 167)*
Priloga 7

TDM - CIKLOSPORIN

NAPISNIK BOLNIKA

<table>
<thead>
<tr>
<th>spol:</th>
<th>starost:</th>
</tr>
</thead>
<tbody>
<tr>
<td>TM [kg]:</td>
<td>TV [cm]:</td>
</tr>
<tr>
<td>diagnosa:</td>
<td></td>
</tr>
<tr>
<td>terapevtsko območje:</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>odmetek</th>
<th>učinkovina</th>
<th>zdravilo</th>
<th>odmetek</th>
<th>interakcija</th>
<th>opombe</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIKLOSPORIN</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>datum</th>
<th>sedanje odmetek</th>
<th>C₀ [ug/L]</th>
<th>C² [ug/L]</th>
<th>priporočilo</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>datum</th>
<th>s-urea</th>
<th>s-krst</th>
<th>Cl-krst</th>
<th>oGF</th>
<th>s-AST</th>
<th>s-ALT</th>
<th>s-GGT</th>
<th>s-balnik</th>
<th>s-hipok</th>
<th>s-lipid</th>
<th>s-ko</th>
<th>K</th>
<th>Mg</th>
<th>RR</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

Priloga 8

ZDRAVLJENJE

S

CIKLOSPORINOM

Pozdravljeni,

zdravnik Van je za zdravljenje Vaše bolezni predpisal zdravilo ciklosporin.

Pred Vami je zloženka z najpomembnejšimi informacijami, ki jih morate vedeti o Vašem zdravilu.

KAJ JE CIKLOSPORIN IN KAKO GA JEMATI?

Ciklosporin je zdravila učinkovina, ki se uporablja za zmanjševanje priobalnega odziva v telesu. Zdravnik Vam je predpisal ciklosporin, ker ste prevzemnik presajenega organa, kostnega mozga, motičnih celic ali pa imate antitumorsko bolez. V Sloveniji se ciklosporin nahaja v naslednjih zdravilih:

- Sandimmun Neoral,
- Citrordin.

Zdravili med seboj nista zamenljivi.

Zdravilo, ki vsebuje ciklosporin, morate jemati vsak dan z zivilom in zverom, z izjemo razreda, ob občutkih bolesti.

To je le poseben pomembno za bolnike po presaditvi.

Kapsule pogotovite cele z nekaj vode, odavajte jemano z mastnimi obroki.

Ob začetku zdravljenja s ciklosporinom je pomembno, da zdravniku poveste, katera zdravila in proraška dopolnila že uporabljate, da ne bi prišlo do medlebojnega delovanja med zdravili. Prav tako zdravnika obvestite o vsaki spremembi v Vaši terapiji.

ČESA SE MORATE MED ZDRAVLJENJEM IZOGIBATI?

Zelo pomembno je, da pri zdravljenju s ciklosporinom ne izhajate greznik ali soka greznice, saj je ta poveča koncentracijo ciklosporina v krvi, kar lahko pride do toksičnosti. Prav tako ne smete uživati pripravkov, ki vsebujejo šenjanjeveko (Hypericum perforatum), saj ta povzroči zmanjšanje koncentracije ciklosporina v krvi, kar ima lahko za posledico zmanjšano učinkovitost zdravil. Sočasno s ciklosporinom je odvajanje tudi uživanje rdečega vina.

NA KAJ MORATE BITI POZORNI?

Zdravljenje s ciklosporinom lahko povzroči zvijanje krvnega tlaka, zato so potrebne redne meritve.

Zdravilo vsebuje alkohol, kar lahko vpliva na Vašo sposobnost za upravljanje vozila in strojev.

Poredno je omembiti izpostavljenost sončnemu in UV svetlu (zaščita oči, sredstva z visokim zaščitnim faktorjem). Pri uporabi ciklosporina med nosečnostjo in dojenjem je potrebna previdnost.

V KATERIH PRIMERIH MORATE TAKOJ OBVESTITI ZDRAVNIKA?

- preoblikovne reakcije (otokanje vek, obraza, utrci, zvoka, izpražnjenje težave s podržanjem ali delitvamo)
- močna skrbišča (vseeno glavo ali čelo), razvoj tumorev ali drugih različnih pojava
- spremembe vida, nenad existingih gibov, invalidnosti, slabljenje zraka, smrtnost (vse to lahko maki in nesempiši možganke okužbe)
- močne okvare (neprimerno napad, zvoda, delitvamo, manjšanje odzivnosti, obesela spreminjenje, motnje v nakupljanje, loša koša, odnose, težave pri...)
- otkrivanja zdravniških dijav, nesempiši močne vaka v zadevah povezanih s kljuna v glavi
- težave z jetri in okvare jetere (ali brez znakov obravnave kotje in oči)
- ovčarjenje
- zmogno število okvarev ali trombočev (blede, utrujenost, nazivnost se loša občutja, podplati, krvavitek brez očistnega vznika...)

Zdravniška obvestila tudi v primeru povlačenja krvnega tlaka, zmanjša koncentracije magnesija ali povzročen koncentracije kalcija v telesu, če imate proton (paniku) ali pa v primeru, da morate prejeti ciklosporin.

KAKO RAVNATI OB LABORATORIJSKI KONTROLI?

Pomembno je, da pred začetkom jemanja zdravila natančno preberete navodila za uporabo, ki je priloženo Vašemu zdravilu. Navodila shranite, morda ga boste šele pozneje prebrali. Če imate dodatna vprašanja, se posvetujte s svojim zdravnikom ali farmacijom.
Demo Dept. - Cyclosporin Dosing Recommendations

Recommended Dose: **100 mg**

12-hourly, for 6 doses

Dose Valid For: **3 days only**

Next Dose At: **09/04/17 19:00**

Give Dose Over: **N/A**

Target Outcome: Trough: 100 ug/L

Predicted Outcome: Trough: 90.3 ug/L

Predicted Peak: 587.2 ug/L

Predicted Trough: 90.3 ug/L

Predicted AUC: 2799.4 ug.h/L

Demo Dept. - Cyclosporin Historical Course Data

Last Dose Given: 100 mg at 07:00 on 09/04/17

Last Dose Outcome: 90.2 - 587.2 ug/L

Demo Dept. - Cyclosporin Pharmacokinetic Model Details

<table>
<thead>
<tr>
<th></th>
<th>Individual</th>
<th>Population</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vd (L)</td>
<td>123.6</td>
<td>115.8</td>
</tr>
<tr>
<td>CL (L/h)</td>
<td>35.7</td>
<td>39.2</td>
</tr>
</tbody>
</table>

Clinician Notes:

PRIPOROCILO ZA ODMERJANJE CIKLOSPORINA. Priporočam, da pacient prejema ciklosporin v odmerku 2x100mg.

Citation:

Signature: ________________________________

Ms Polonca Drofenik