NATAŠA NIKOLIĆ

MAGISTRSKA NALOGA

ENOVITI MAGISTRSKI ŠTUDIJSKI PROGRAM FARMACIJA

Ljubljana, 2017
EVALUATION OF THE INFLUENCE OF THE STORAGE CONDITIONS ON THE VIABILITY OF DIFFERENT GROUPS OF MICROORGANISMS IN HOMOGENIZED KEFIR

ENOVITI MAGISTRSKI ŠTIJENSKI PROGRAM FARMACIJA

Ljubljana, 2017

ZAHVALA

Zahvaljujem se mentorju Borutu Štruklju za priložnost, izkazano zaupanje, znanje in strokovno pomoč. Prav tako se iskreno zahvaljujem somentorju Alešu Berlecu za vse pridobljene izkušnje, pomoč pri pisanju naloge ter ogromno potrpljenja. Hvala tudi ostalim sodelavcem Instituta Jožefa Stefan.

Posebej pa bi se rada zahvalila svoji družini, ki mi je omogočila študij in me vsa leta spodbujala, brez njih mi ne bi uspelo.

Magistrsko nalogo posvečam očetu Milanu v spomin.

IZJAVA

Izjavljam, da sem magistrsko nalogo samostojno izdelala pod mentorstvom prof. dr. Boruta Štruklja, mag. farm. in somentorstvom doc. dr. Aleša Berleca, mag. farm.

Nataša Nikolić

Predsednica: prof. dr. Lucija Peterlin Mašič
Mentor: prof. dr. Borut Štrukelj
Somentor: doc. dr. Aleš Berlec
Član: doc. dr. Jurij Trontelj
1. UVOD

1.1 PROBIOTIKI

1.1.1 Sestava probiotičnih izdelkov

1.1.2 Zgodovina probiotikov

1.2 FARMAKOLOŠKI UČINKI PROBIOTIKOV

1.2.1 Farmakološki učinki na gastrointestinalni trakt

1.2.1.1 Diareja

1.2.1.2 Laktozna intoleranca

1.2.2 Vaginalna obolenja

1.3 UČINKOVITOST IN VARNOST PROBIOTIKOV

1.4 KEFIR

1.4.1 Kefiran

1.5 KEFIRNA ZRNA

1.5.1 Mikrobiota kefirnih zrn

1.5.1.1 Mlečnokislinske bakterije

1.5.1.2 Kvasovke

1.5.1.3 Ocetnokislinske bakterije

1.5.2 Nastanek kefirnih zrn

1.5.3 Detekcija mikroorganizmov v kefirnih zrnih

1.5.4 Viabilnost mikroorganizmov

1.6 UPORABA KEFIRNIH ZRN V FARMAKOLOŠKE NAMENE

1.6.1 Farmakološki učinki na gastrointestinalni trakt

1.6.2 Protimikrobni in protiglivični učinek

1.6.3 Zniževanje hiperlipidemije

1.6.4 Vpliv na imunski sistem in protitumorni učinek

1.7 ALOE VERA

1.7.1 Farmakološke lastnosti izvlečka aloe vere

1.7.2 Aloe vera gel

2. NAMEN DELA
2.1 DELOVNE HIPOTEZE

3. MATERIALI IN METODE

3.1 MATERIALI
3.1.1 Kemikalije
3.1.2 Laboratorijska oprema
3.1.3 Trdna gojišča, pufri in raztopine
3.1.4 Vzorec kefirnih zrn in aloe vera gela

3.2 NAČRT EKSPERIMENTALNEGA DELA

3.3 METODE
3.3.1 Homogenizacija
3.3.2 Liofilizacija
3.3.3 Skladiščenje vzorcev
3.3.3.1 Vzorci v preliminarnem poskusu
3.3.3.2 Vzorci v glavnem poskusu
3.3.4 Metoda kapljanja
3.3.5 Inkubacija plošč
3.3.6 Merjenje pH vrednosti
3.3.7 Določanje števila mikroorganizmov in statistična obdelava rezultatov
3.3.8 Vgradnja homogenizata kefirja v aloe vera gelu

4. REZULTATI

4.1 REZULTATI PRELIMINARNEGA POSKUSA
4.2 REZULTATI GLAVNEGA POSKUSA
4.2.1 Viabilnost mikroorganizmov na 4 °C
4.2.2 Viabilnost mikroorganizmov na sobni temperaturi
4.2.3 Viabilnost mikroorganizmov na 37 °C
4.2.4 Rezultati liofilizacije
4.2.5 pH vrednosti vzorcev ob zaključku glavnega poskusa
4.2.6 Izgled kolonij po inkubaciji
4.3 REZULTATI VGRADNJE HOMOGENIZATA KEFIRJA V ALOE VERA GELU
4.3.1 Viabilnost mikroorganizmov v suspenziji kefirja
4.3.2 Viabilnost mikroorganizmov v aloe vera gelu
4.3.3 pH vrednosti vzorcev

5. RAZPRAVA

5.1 SESTAVA MIKROBIOTE KEFIRNIH ZRN, REDČENJE IN NAČIN HOMOGENIZACIJE
5.2 TEMPERATURA KOT STRESNI DEJAVNIK
5.3 VPLIV LIOFIILIZACIJE NA VIABILNOST
5.4 VPLIV ALOE VERA GELA NA VIABILNOST MIKROORGANIZMOV
5.5 PH VREDNOSTI

6. SKLEP

7. LITERATURA
Slika 1: Kemična pretvorba laktoze do glukoze in galaktoze .. 5
Slika 2: Kemijska struktura kefirana .. 8
Slika 3: Makroskopska struktura kefirnih zrn ... 9
Slika 4: Shematični model tvorbe kefirnih zrn .. 12
Slika 5: Prečni prerez lista aloe vere ... 18
Slika 6: Homogenizator GentleMACSTM Dissociator .. 25
Slika 7: M-vsebniki, v katerih homogeniziramo vzorec .. 26
Slika 8: M-vsebniki, nameščeni na homogenizatorju.. 26
Slika 9: Liofilizator LIO 2000, Kambic ... 28
Slika 10: Pripravljeni vzorci za skladiščenje na treh različnih temperaturah ... 29
Slika 11: Shematični prikaz metode kapljanja ... 31
Slika 12: Preliminarni poskus – ugotavljanje optimalnega načina
homogenizacije in skladiščnih pogojev ... 34
Slika 13: Viabilnost v odvisnosti od časa shranjevanja na 4 °C 35
Slika 14: Viabilnost v odvisnosti od časa shranjevanja na 37 °C 35
Slika 15: Viabilnost MO v odvisnosti od časa v homogenizatu kefirja v PBS na 4 °C 37
Slika 16: Viabilnost MO v odvisnosti od časa v homogenizatu kefirja v 10%
SAHAROZI NA 4 °C .. 37
Slika 17: Viabilnost MO v odvisnosti od časa v liofilizatu homogenizata kefirja
v PBS na 4 °C .. 38
Slika 18: Viabilnost MO v odvisnosti od časa v liofilizatu homogenizata kefirja
v 10% SAHAROZI NA 4 °C .. 39
Slika 19: Viabilnost MO v odvisnosti od časa v homogenizatu kefirja v PBS na
SOJNI TEMPERATURI .. 40
Slika 20: Viabilnost MO v odvisnosti od časa v homogenizatu kefirja v 10%
SAHAROZI NA SOJNI TEMPERATURI ... 40
Slika 21: Viabilnost MO v odvisnosti od časa v liofilizatu homogenizata kefirja
v PBS na SOJNI TEMPERATURI .. 41
Slika 22: Viabilnost MO v odvisnosti od časa v liofilizatu homogenizata kefirja
v 10% SAHAROZI NA SOJNI TEMPERATURI .. 42
Slika 23: Viabilnost MO v odvisnosti od časa v homogenizatu kefirja v PBS na 37 °C ... 43
Slika 24: Viabilnost MO v odvisnosti od časa v homogenizatu kefirja v 10%
SAHAROZI NA 37 °C .. 43
Slika 25: Viabilnost MO v odvisnosti od časa v liofilizatu homogenizata kefirja v
PBS na 37 °C .. 44
Slika 26: Viabilnost MO v odvisnosti od časa v liofilizatu homogenizata kefirja
v 10% SAHAROZI NA 37 °C .. 44
Slika 27: pH vrednosti vzorcev po 8 tednih (ob zadnjem nacepljanju) 46
Slika 28: Izgled kolonij MKB po 72 urni inkubaciji plošč na 30 °C 47
Slika 29: Izgled kolonij kvasovk po 72 urni inkubaciji na 30 °C .. 48
Slika 30: Izgled kolonij OKB po 72 urni inkubaciji na 30 °C .. 48
SLIKA 31: VIABILNOST MO V ODVISNOSTI OD ČASA V HOMOGENIZATU KEFIRJA V PBS NA 4 °C
.. 49
SLIKA 32: VIABILNOST MO V ODVISNOSTI OD ČASA V HOMOGENIZATU KEFIRJA V PBS NA SOBNI TEMPERATURI ... 50
SLIKA 33: VIABILNOST MO V ODVISNOSTI OD ČASA V HOMOGENIZATU KEFIRJA V PBS NA 37 °C.. 50
SLIKA 34: VIABILNOST MO VGRAJENIH V ALOE VERA GEL SKLADIŠČEN NA 4 °C V ODVISNOSTI OD ČASA ... 51
SLIKA 35: VIABILNOST MO VGRAJENIH V ALOE VERA GEL SKLADIŠČEN NA SOBNI TEMPERATURI V ODVISNOSTI OD ČASA ... 51
SLIKA 36: VIABILNOST MO VGRAJENIH V ALOE VERA GEL SKLADIŠČEN NA 37°C V ODVISNOSTI OD ČASA ... 52
SLIKA 37: pH VREDNOSTI PO VGRADNJI HOMOGENIZATA V ALOE VERA GEL 52
SLIKA 38: TREHALOZA ... 56
SLIKA 39: DIAZOLIDINIL UREA ... 57
SLIKA 40: DMDM HIDANTOIN .. 57
KAZALO PREGLEDNIC

PREGLEDNICA I: NAJPOGOSTEJŠE NAJDENE VRSTE MKB V PROBIOTIČNIH IZDELKIH 2
PREGLEDNICA II: NAJPOGOSTEJŠI SEVI MKB ... 11
PREGLEDNICA III: PREGLED UPORABLJENIH KEMIKALIJ ... 20
PREGLEDNICA IV: PREGLED LABORATORIJSKE OPREME ... 20
PREGLEDNICA V: DELEŽ VODE V CELOKUPNI MASI ZRN, KI SE ODSTRANI Z LIOFILIZACIJ... 45
POVZETEK

Probiotiki so živi nepatogeni mikroorganizmi, ki zaužiti v zadostni količini, dobodejno vplivajo na zdravje gostitelja. Najpogostejše probiotične bakterije so mlečnokislinske bakterije, predvsem iz rodu laktobacilov in bifidobakterij, ki izkazujejo koristne učinke, saj preprečujejo razrast patogenih mikroorganizmov in tako vzdržujejo ravnotežje črevesne in vaginalne mikroflore. Izkazujejo mnoge terapevtske učinke, predvsem pri gastrointestinalnih in vaginalnih obolenjih. Probiotiki zadnjih deset let doživljajo svoj pravi razvoj, vendar so bili njihovi učinki poznani že v preteklosti.

V okviru naloge smo proučevali kefir, enega od najstarejših probiotičnih izdelkov, tradicionalno pripravljenega iz kefirnih zrn, ki predstavljajo pestro združbo mlečnokislinskih in ocetnokislinskih bakterij ter kvasovk.

Cilj naše raziskave je bil dokazati, da kefirna zrna vsebujejo vse omenjene mikroorganizme, med katerimi prevladujejo mlečnokislinske bakterije in probiotiki vpliv skladiščnih pogojev (shranjevanje pri 4 °C, sobni temperaturi in pri 37 °C) na viabilnost mikroorganizmov v odvisnosti od časa. Naš cilj je bil tudi vgradnja homogenizata kefirja v 100% gel iz izvlečka aloje (Aloe Vera L., v nadaljevanju aloe vera gel) in spremljanje stabilnosti, s ciljem razvoja potrdne farmacevtske oblike za zdravljenje vaginalne disbioze. Aloe vera gel služi kot dostavni sistem, ki ne draži vaginalne sluznice in izkazuje antimikotičen učinek.

Z metodo kapljanja smo nacepili redčitve homogeniziranih vzorcev na trdna gojišča ter po inkubaciji in skladiščenju na različnih pogojih prešele izrasle kolonije ter s tem določili viabilnost mikroorganizmov. Preverili smo tudi viabilnost mikroorganizmov v liofiliziranih vzorcih in vzorcem pomerili pH vrednosti.

Ugotovili smo, da v mikrobioti kefirnih zrn mlekarne Krepko prevladujejo mlečnokislinske bakterije, katerih viabilnost je najvišja pri hranjenju na 4 °C, najslabša pa na 37 °C; podobno je tudi pri kvasovkah in ocetnokislinskih bakterijah. Po liofilizaciji stopnja preživetja vseh mikroorganizmov pričakovano pade.

Preživetje izboljša dodatek 10% saharove, ki je lioprotektant. Zrna vsebujejo 10⁷ CFU/cm² mlečno kislinske bakterij, kar zadošča enemu izmed kriterijev, da izdelek izkazuje probiotične oz. zdravju koristne učinke. Nepričakovno pa močno pade viabilnost mikroorganizmov po vgradnji v aloe vera gel, stopnja preživetja je premajhna.
Na osnovi testov smo ugotovili, da bi bilo v prihodnje potrebno uporabiti nekonzerviran gel ali pa spremeniti farmacevtsko obliko – pripraviti vaginalne kapsule iz liofiliziranih kefirskega mleka in liofiliziranega aloevera, ki bi izkazovali boljšo stabilnost.

KLJUČNE BESEDE

Probiotiki, kefirna zrna, mlečnokislinske bakterije, Aloevera, vaginalna disbioza
ABSTRACT

Probiotics are living non-pathogenic microorganisms that consumed in sufficient quantity have beneficial effect on the health of the host. They are similar to those of which intestinal and vaginal microbiotas are composed. The most common bacteria that are used as probiotics are lactic acid bacteria, most of them from genera *Lactobacillus* and *Bifidobacterium*. These show beneficial effects as they prevent the spread of pathogenic microorganisms and consequently maintain microflora’s balance. They show many therapeutic effects, especially with gastrointestinal and vaginal diseases. The use of probiotics has been spreading for the last ten years. Nevertheless, they were known already in the past.

We examined kefir that is one of the oldest probiotic products, traditionally prepared of kefir grains. These contain a variable group of lactic acid bacteria, acetic acid bacteria and yeast.

The goal of our research was to prove that kefir grains consist of all already mentioned microorganisms, among which lactic acid bacteria predominate and examine the effects of storage conditions (storage conditions: 4 °C, room temperature and 37 °C) on the viability of microorganisms. Furthermore, the purpose of our research was also to incorporate a kefir homogenate into aloe vera 100% gel and monitor the stability. Our goal was to imitate a semi-solid pharmaceutical form for curing the vaginal dysbiosis. The aloe vera gel serves as a delivery system that does not irritate the vaginal mucosa and shows antifungal effect.

We used the drop plate method by inoculating homogeneous samples onto solid culture media and counting grown colonies after incubation and storage under different conditions to determine the viability of microorganisms. We also checked the viability of microorganisms inside the lyophilised samples. Furthermore, we measured the pH of the samples.

We have established that within the microbiota of dairy Krepko’s kefir grains lactic acid bacteria predominate. Their viability is the best at 4 °C and the worst at 37 °C. Similar happened with yeast and acetic acid bacteria. The level of microorganisms’ survival drops after lyophilisation. Some improvement is shown after adding 10% sucrose that is
lyoprotectant. The grains contain 10^7 CFU/cm2 of lactic acid bacteria that represents one of the criteria that product show effects beneficial to the health. However, the microorganisms’ viability unexpectedly drops after incorporating them in the aloe vera gel and the survival level is too low.

In the future, non-preserved gel should be used as the preservatives slow down the growth of microorganisms. Also, vaginal capsules of lyophilised lactic acid bacteria and lyophilised aloe vera gel that, according to the previous research, show better stability, could also be used.

KEY WORDS
Probiotics, kefir grains, lactic acid bacteria, Aloe vera gel, vaginal dysbiosis
SEZNAM OKRAJŠAV

<table>
<thead>
<tr>
<th>Akratura (kratica)</th>
<th>Vgrajeno obrazložilo</th>
</tr>
</thead>
<tbody>
<tr>
<td>AK</td>
<td>Aminokislina</td>
</tr>
<tr>
<td>CFU</td>
<td>število kolonijskih enot (Colony forming unit)</td>
</tr>
<tr>
<td>DH₂O</td>
<td>Destilirana voda</td>
</tr>
<tr>
<td>DMDM Hidantoín</td>
<td>1,3-bis (hidroksimetil)-5,5-dimetilimidazolidin-2,4-dion</td>
</tr>
<tr>
<td>FO</td>
<td>Farmacevtska oblika</td>
</tr>
<tr>
<td>GIT</td>
<td>Gastrointestinalni trakt</td>
</tr>
<tr>
<td>IL</td>
<td>Interleukin</td>
</tr>
<tr>
<td>MKB</td>
<td>Mlečnokislinske bakterije</td>
</tr>
<tr>
<td>MO</td>
<td>Mikroorganizmi</td>
</tr>
<tr>
<td>OH</td>
<td>Ogljikovi hidrati</td>
</tr>
<tr>
<td>OKB</td>
<td>Ocetnokislinske bakterije</td>
</tr>
<tr>
<td>PBS</td>
<td>Fosfatni pufer</td>
</tr>
<tr>
<td>PU</td>
<td>Pomožna učinkovina</td>
</tr>
</tbody>
</table>
1. UVOD

1.1 PROBIOTIKI

Probiotiki so živi nepatogeni MO, ki zaužiti v zadostni količini, dobrodejno vplivajo na zdravje gostitelja. Beseda probiotik izhaja iz latinskega predloga »pro« in grške besede »bios«, ki naj bi pomenila »za življenje« (1).

Črevesno mikrobioto sestavljajo dobre ali koristne bakterije, prek 500 različnih vrst in predstavljajo od 1,5 do 2 kg človekove telesne teže. V probiotičnih pripravkih so podobne bakterije kakor v črevesju, ki imajo koristne učinke, saj preprečujejo razrast patogenih ali oportunističnih MO, v črevesju pa se ne naselijo za stalno, ampak le prehodno. Dobre bakterije so tudi v urogenitalnem traktu.

Kadar pa patogeni MO ali slabe bakterije prevladajo nad dobrimi bakterijami, se ravnovesje v stabilni mikrobioti poruši, kar imenujemo tudi črevesna (vaginalna) disbioza. Do tega pride ob raznih okužbah in drugih bolezenskih stanjih, ob uporabi antibiotikov in drugih zdravil, pri prekomernem uživanju alkohola in pod vplivom dolgotrajnega stresa. V teh primerih se priporoča uporaba probiotikov, ki uravnotežijo mikrobioto (2).

1.1.1 Sestava probiotičnih izdelkov

Bakterije, ki jih najdemo v probiotičnih izdelkih, so MKB, predvsem iz rodu laktobacilov in bifidobakterij, v manjši meri najdemo tudi eneterokoke in streptokoke. MKB so po Gramu pozitivne bakterije, ki povzročajo mlečnokislinsko vrenje; proces razgradnje OH brez prisotnosti kisika. Sladkor se pretvori v mlečno kislino, zniža se pH, kar pa posledično onemogoča razrast patogenih bakterij, kot sta recimo Salmonella spp. ali Escherichia coli (3). Poleg bakterij so v probiotičnih izdelkih tudi glukooligosaharidi – enostavni sladkorji, ki skozi prebavila prehajajo v nespremenjeni obliki, se ne prebavljajo in tako ugodno vplivajo na rast in aktivnost probiotičnih bakterij, čemur pravimo tudi prebiotiki. Kombinacija probiotika in prebiotika je sinbiotik. Poleg MKB v probiotičnih izdelkih zasledimo tudi nekatere kvasovke, najpogosteje Saccharomyces boulardii in Saccharomyces cerevisiae (4). V preglednici I vidimo, da je v probiotičnih veliko različnih vrst MKB, ki pa se med seboj razlikujejo po učinkovitosti, varnosti in obstojnosti.
Preglednica I: Najpogosteje najdene vrste MKB v probiotičnih izdelkih (5)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>L. acidophilus,</td>
<td>B. bifidum,</td>
<td>Ent. faecalis,</td>
<td>S. cremoris,</td>
</tr>
<tr>
<td>L. casei,</td>
<td>B. breve,</td>
<td>Ent. faecium</td>
<td>S. salivarius,</td>
</tr>
<tr>
<td>L. rhamnosus,</td>
<td>B. infantis,</td>
<td></td>
<td>S. diacetylactis,</td>
</tr>
<tr>
<td>L. plantarum,</td>
<td>B. animalis</td>
<td></td>
<td>S. intermedius</td>
</tr>
<tr>
<td>L. lactis,</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L. brevis,</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L. reuteri,</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L. salivarius</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

MKB so normalno prisotne v funkcionalni prehrani, ki predstavlja probiotične izdelke, ki jih uživamo vsakodnevno. Med te izdelke štejemo jogurte, fermentirano mleko (kefir, kislo mleko, acidofilno mleko in bifidogeno mleko) ter ostale oblike fermentirane hrane. Na trgu pa se poleg probiotične prehrane pojavljajo probiotična prehranska dopolnila v obliki tablet, kapsul, praškov, past ali pršilnikov (2).

MKB izkazujejo **probiotične učinke**, če izpolnjujejo sledene pogoje:

- so živi nepatogeni in netoksični MO, ki ne proizvajajo toksinov (ne povzročajo bolezni), so prisotni v zadostni količini (10⁶ – 10⁹ CFU/g) ter so stabilni skozi celoten rok uporabe ob primernem shranjevanju;
- so sposobne nespremenjene prispeti do črevesne ali vaginalne mikrobiote in preživeti vpliv želodčne in žolčne kisline, encimov ter imunskih faktorjev gostitelja;
- so sposobne se adherirati na epitelske celice in tam razraščati;
- so sposobne proizvajati encime, ki spodbujajo prebavo ter sintetizirati protimikrobne substance;
- so sposobne povrniti ravnotežje mikrobiote (3).
1.1.2 Zgodovina probiotikov

Zgodovina probiotikov sega že v začetek 20. stoletja. Prvi pečat v njihovem razvoju je pustil ruski bakteriolog in Nobelov nagrajenec Ilija Iljič Mečnikov (1845–1916). Mečnikov je z opazovanjem bolgarskih kmetov, ki so vsakodnevno uživali kislo fermentirano mleko, ugotovil, da le-to deluje blagodejno na črevesno floro. MKB, ki so prisotne v tem napitku, je poimenoval Lactobacillus bulgaricus in ugotovil, da pozitivno delujejo na mikrobioto in zmanjšujejo toksičen učinek patogenih MO. Mečnikov je priporočal dnevno uživanje fermentiranega mleka za dobro počutje in ponovno povrnitev zdravja. Na podlagi teh ugotovitev so kmalu po Mečniku probiotiki postali del medicinske prakse.

Leta 1935 so bile izvedene prve klinične študije in bilo je ugotovljeno, da so nekateri sevi Lactobacillus acidophilus izredno aktivni v človeškem prebavnem traktu. Pridobili so spodbudne rezultate pri zdravljenju kroničnega zaprtja (6).

Leta 1950 je bil v Združenih državah Amerike izdelan prvi patentiran probiotični izdelek in prvič se je tudi uvedel izraz »probiotiki«, 1989 pa je bila vpeljana definicija probiotikov, ki jo poznamo danes (3).

V 90. letih prejšnjega stoletja so probiotiki začeli vzbujati zanimanje mnogim raziskovalcem, 10 let nazaj pa so doživeli svoj pravi razcvet, ki traja še danes in tako prispevajo pomemben delež v farmacevtski industriji, saj se lahko uporabljajo tako za preprečevanje, kot tudi zdravljenje mnogih bolezenskih stanj (5).

1.2 FARMAKOLOŠKI UČINKI PROBIOTIKOV

Stanja, ki so bila zdravljena, olajšana ali preprečena oz. imajo potencial, da bi bila lahko zdravljena, olajšana ali preprečena s probiotiki, so: diareja, gastroenteritis, sindrom razdražljivega črevesa, Chronova bolezen, ulcerativni kolitis, različne vrste raka (predvsem rak debelega črevesja), zmanjšanje težav pri laktoznih intoleranci, alergije, hiperlipidemija, jetne bolezni, okužba z bakterijo Helicobacter pylori ter bakterijska vaginoza in kandidoza (3). V nadaljevanju bomo opisali najpomembnejše dokazane učinke.
1.2.1 Farmakološki učinki na gastrointestinalni trakt

1.2.1.1 Diareja

Klinično največkrat dokazan je terapevtski učinek probiotikov pri akutni virusni (npr. rotavirus) ali bakterijski diareji (npr. *Clostridium difficile*), tako pri otrocih kot pri odraslih, saj dokazano zmanjšujejo pogostost pojava ali pa čas trajanja diareje.

Dokazano tudi zmanjšuje pogostost pojava diarej povzročenih z antibiotiki, zato se priporoča, da se ob jemanju antibiotikov uživa tudi probiotike, z vsaj dvournim razmikom. Koristne učinke so prav tako dokazali Cunningham-Rundles in sodelavci pri HIV pozitivnih otrocih. Tisti, ki so uživali probiotike s sevom *L. plantarum*, so imeli manj epizod ponavljajočih se diarej, okrepil pa naj bi se jim tudi imunski sistem, kar je dodatna korist. Raziskave, ki so proučevali vpliv probiotikov pri zmanjšanju pojava potovalne diareje, pa so bile le delno uspešne, vendar obetajoče, zato je potrebno še več raziskav.

Sevi, ki so terapevtsko najbolj učinkoviti, so: *L. plantarum, L. reuteri, Saccharomyces boulardii in Bifidobacterium spp.* Sprožajo izločanje intestinalnih mucinov MUC2 in MUC3 ter tekmujejo z enteropatogeni za vezavo na receptorje na epitelijskih celicah. S tem onemogočajo njihovo vezavo, saj jih sterično ovirajo in se s tvorbo biofilma adherirajo na sluznice. MKB tudi znižujejo pH s proizvodnjo mlečne kisline in tako ustvarjajo neugodno okolje za razrast patogenov. Na ta način probiotiki zmanjšujejo ali preprečujejo vpliv enteropatogenov in s tem pojav okužb, ki potencialno povzročajo diarejo.

1.2.1.2 Laktozna intoleranca

Probiotični izdelki, kot sta kefir ali jogurt, ki vsebujejo MKB in druge probiotične MO, so primerni za ljudi z laktozno intoleranco. Namreč MKB vsebuje encim laktazo iz družine beta-galaktozidaz, ki lahko razgradi laktozo na glukozo in galaktozo, nato pa ju fermentira do mlečne kisline, kar povzroči padec vrednosti pH v končnem izdelku (slika 1). Če tega encima pri ljudeh ni, se pojavlja laktozna intoleranca. Pri ljudeh z laktozno intoleranco je premalo laktaze za razgradvanje velike količine laktoze, zato posledično zastaja voda v črevesju, kar povzroča napihnjenost in diarejo. Uživanje nekaterih aktivnih sevov pri laktozno intolerantnih ljudeh povzroči, da prenesejo več laktoze, kot bi jo sicer. Poleg tega pa se izdelki, kot sta kefir in jogurt, praznijo iz želodca veliko
počasneje kakor mleko, kar pomeni, da je zmanjšana tudi laktozna obremenitev črevesja (9).

Slika 1: Kemična pretvorba laktoze do glukoze in galaktoze (10)

1.2.2 Vaginalna obolenja

Že v 80. letih prejšnjega stoletja so raziskovalci prišli do ideje, da bi se MKB lahko uporabljale preventivno ali kurativno pri vaginalnih vnetjih. Uporaba probiotikov v vaginalne namene se je 30 let pozneje izjemno razširila, saj so ugotovili, da patogeni MO porušijo ravnotežje viralne mikrobiote, uporaba MKB pa povrne naravno ravnotežje.

Zdravo vaginalno mikrobioto predmenopavznih žensk sestavlja več kot 50 vrst aerobnih in anaerobnih MO, kjer prevladujejo bakterije, predvsem iz rodu laktobacilov (od \(10^7\) do \(10^8\) CFU/g). Sevi, ki jih najpogosteje najdemo, so: \(L.\ iners\), \(L.\ casei\), \(L.\ salivarus\), \(L.\ vaginalis\), \(L.\ gasseri\), \(L.\ fermentum\), \(L.\ jenesenii\), \(L.\ acidophilus\), \(L.\ rhamnosus\), \(L.\ fermentum\), \(L.\ reuteri\), \(L.\ plantarum\), \(L.\ delbrueckii\), \(L.\ brevis\) in \(L.\ crispatus\) (11).

MKB proizvajajo mlečno kislo, ki disocira na laktat in vodikov ion, zaradi katerega je notranjost nožnice kisla (pH med 3,8 in 4,5), kar je neugodno za razrast patogenih MO. Poleg mlečne kisline proizvajajo tudi vodikov peroksid (\(H_2O_2\)), ki je oksidant in deluje toksično na večino katalazno negativnih anaerobnih MO ter protimikrobne peptide bakteriocine (npr. nisin), ki zavira rast in razvoj patogenov (12). Število laktobacilov se lahko zmanjša zaradi hormonskih sprememb, kot je menopavza, pri uporabi antibiotikov, kontraceptivov, kortikosteroidov ali v času nosečnosti. Ti dejavniki porušijo razmere v nožnici in zmanjšajo njeno kislost, kar pa je predpogoj za okužbo z različnimi mikrobi. Pride do bolezenskih stanj, kot so bakterijska vaginoza, kandidoza ali vnetje sečil (13).

Dve najpogosteji obliki vaginitisa, ki se pojavljata pri ženskah v rodni dobi, sta bakterijska vaginoza in kandidoza. Bakterijska vaginoza predstavlja tretjino vseh
vaginalnih obolenj. Je polimikroben klinični sindrom, ki nastane zaradi izpodrinjanja koristnih laktobacilov in nadomestitve z drugimi, patogenimi MO, kot so po Gramu negativne anaerobne bakterije (Gardnerella vaginalis, Atopobium vaginae in Prevotella spp) (14). Za zdravljenje bakterijske vaginoze se v prvi vrsti uporabljajo antibiotiki (metronidazol in klindamicin), vendar pa so študije pokazale, da se po antibiotičnem zdravljenju bakterijska vaginoza povrne, in sicer po 3 mesecih pri 30 % in po 6 mesecih kar pri 50 % bolnic (5).

Z glivičnimi vnetji nožnice naj bi se vsaj enkrat v življenju srečala vsaka četrtá ženska. Lokalno zdravljenje z antimikotiki ima prednost pred sistemskim zdravljenjem, vendar študije pri tovrstnem zdravljenju opažajo pojav rezistence (15).

Zato se pri ženskah v rodnih dobi s ponavljajočimi se bakterijskimi vaginozami in kandidozami preizkuša vpliv probiotikov na lajšanje simptomov. Študija je bila izvedena tako, da so v prvi skupini bolnice vsak dan v obdobju dveh mesecev uživale probiotični jogurt z dodano kulturo L. acidophilus, v drugi skupini pa so prejemale placebo. Po enem mesecu se je v prvi skupini bakterijska vaginoza ponovila pri 24 %, v drugi skupini pa pri 53 % bolnic, po še dodatnih dveh mesecih v prvi skupini pri 4 %, v drugi skupini pa pri 36 % bolnic. Tiste, ki so uživale probiotične izdelke, so poročale o izboljšanju zdravljenja, ter niso opazile nikakršnih neželenih učinkov. Sklepamo, da probotiki, aplicirani peroralno ali še boljše vaginalno, uspešno preprečujejo razrast in virulenco patogenih MO (16).

1.3 UČINKOVITOST IN VARNOST PROBIOTIKOV
Zavedati se moramo, da se poleg koristnih učinkov pri uporabi probiotikov lahko pojavijo tudi neželeni učinki, čeprav pri zdravih ljudeh v zelo redkih primerih. Viabilnost (CFU/g) in aktivnost probiotičnih mikroorganizmov v izdelkih močno varira, kar je lahko potencialno nevarno ali pa razlog za odsotnost učinka. Aktivnost probiotičnih kultur se namreč s časom zmanjša (1).

Ker gre za žive MO, je potrebno izključiti njihovo patogenost in zagotoviti varnost uporabe predvsem pri starejših, pri bolnikih s kroničnimi obolenji ali z okvarjenim imunskim sistemom ter pri otrocih. Bakterije, ki so lahko patogene, so predvsem enterokoki in nekateri njihovi sevi, ki posedujejo rezistenco na antibiotike (2). Pri ljudeh z okvarjenim imunskim sistemom pa je lahko nevarno uživanje kvasovke Saccharomyces boulardii, saj
lahko povzroči glivične okužbe. V ekstremnih primerih lahko pride celo do sepse (S. boulardii) in endokarditisa (L. rhamnosus), predvsem pri tistih, kjer sevī zaradi okvare GIT prehajajo direktno v krvni obtok (17). Lažje oblike neželenih učinkov, ki so zelo pogosti, so večje količine črevesnih plinov ter napihnjenost (18). Ne zasledimo pa nikakršnih zapisov o neželenih učinkih pri probiotikih za vaginalno uporabo.

Varnost probiotikov nadzoruje Evropska agencija za varnost hrane (EFSA) (19). Varnost in učinkovitost sta odvisni tudi od vsakega posameznika, ki naj upošteva rok uporabe in pravilno shranjevanje izdelka, saj so probiotične kulture občutljive na topoto, kisik in vlago, kar lahko zmanjša njihovo stabilnost in s tem aktivnost. Da bi dosegli koristen učinek, je potrebno probiotike uživati dlje časa, kajti po enem ali dveh tednih se že izločijo iz črevesja. Vendar pa kljub pozitivnim vplivom, določeni sevī (L. reuteri, L. fermentum, L. acidophilus in L. plantarum) lahko povzročajo celo rezistenco na neketere antibiotike, kot so npr. tetraciklin, eritromicin in kloramfenikol (17).

1.4 KEFIR

Glavni produkti, ki nastanejo pri fermentaciji kefirja so mlečna kislina, etanol in CO₂ (približno 1,98 g/l) in ravno ti produkti dajejo kefiru osvežilen kisel okus, viskoznost in nizek odstotek alkohola (0,01 %–2,0 %). Kefir vsebuje še vodo (87,6 %), beljakovine (3,3 %), laktozo (4,0 %), maščobe (3,5 %), maščobe (3,5 %), pa tudi mineralne (magnezij, kalcij in fosfor), vitamin K, vitamine skupine B (B3, B5, B6, B12, biotin in folna kislina) in esencialne AK (cistein, prolin, lizin, izolevcin, fenilalanin in arginin). Ima višjo biološko vrednost kakor mleko, saj so beljakovine v njem lažje prebavljive zaradi delne proteolize med postopkom fermentacije, zato je kefir primerno živilo za laktozno intolerantne ljudi. Vrednost pH, ki jo namerimo v končnem izdelku je med 4,2 in 4,6 (20).
1.4.1 Kefiran

V kefirnem zrnu so združbe bakterij in kvasovk ujete v **proteinsko polisaharidnem matriksu** (13 % proteina in 24% polisaharida), ki je **eksopolisaharid** in ga imenujemo kefiran. Kefiran je vodotopen polisaharid, sestavljen iz razvejanih verig D-glukoze in D-galaktoze, ki sta prisotni v enakem deležu (21).

Ime je dobil po kefirju, ker je eden izmed **najpomembnejših metabolitov**, ki nastajajo v kefirnem zrnu. Učinkuje kot lepilo in na ta način varuje zrno pred morebitnimi poškodbami ter predstavlja 24 % suhe mase kefirnega zrna. MKB, natančneje laktobacili (*L. kefiranofaciens*, *L. bulgaricus* in *L. kefir*) in nekatere kvasovke (*S. cerevisiae*), sintetizirajo ekstracelularni kefiran, mehanizem nastanka pa še ni povsem jasen. Največ ga nastane po 40 urah fermentacije, namreč takrat odmirajo MO in zato proizvajajo več kefirana z namenom zaščite lastnih celic (22). Omogoča, da se probiotični MO **adherirajo** na epitelijske celice, obenem pa jih kot zaščitni plašč varuje pred okoljskimi vplivi. Je krioprotektant, kefirnim zrnom pa daje tudi funkcionalne lastnosti (23).

Kefiranu pripisujejo mnoge terapevtske učinke, saj naj bi deloval **protimikotično**, **protitumorno**, **protimikrobno**, **protivnetno** in **antioksidativno**, zahvala za farmakološke učinke pa gre njegovi strukturi (*slika 2*), ki je encimi, kot sta alfa-amilaza in galaktaza, ne morejo razgraditi. Takšna struktura zagotavlja stabilnost kefirana, kar pomeni ohranitev zrn med fermentacijo, po drugi strani pa uspešen prehod kefirana do črevesja, kjer deluje kot prebiotik, saj je v debelem črevesu hrana za laktobacile in bifidobakterije, ter na ta način spodbuja njihovo rast (21).

Slika 2: Kemijska struktura kefirana (24)
1.5 KEFIRNA ZRNA

Kefirna zrna so mlečno bele, nagubane in elastične ovalno-okrogle granule, s čvrsto strukturo, velikosti od nekaj milimetrov do okoli 2 centimetrov (slika 3). So nepravilnih oblik in v njih je približno 10 % suhe snovi, predvsem OH (56 %) in beljakovine (32 %). Raziskovalec Cui jih je opisal kot »biološko vitalne organizme«, saj nova zrna nastanejo na račun odlomljenega delca starega zrna, med fermentacijo pa se v mleku število in velikost zrn poveča do 25 %. Kefirna zrna se v mleku samodejno razmnožujejo in rastejo približno 20 ur. Nastanek kefirnih zrn še ni povsem znan, ena izmed teorij pa pravi, da so nastala v mleka, ki ga je kavkaško prebivalstvo hranilo v vrečah iz kozje kože, pri temperaturi 25 °C. Fermentacijo mleka naj bi sprožile črevesne bakterije, prisotne v kozji koži, oblikovala naj bi se plast MO, ujetih v proteinsko polisaharidnem matriksu in tako so posledično nastala kefirna zrna. Kefirnih zrn ne moremo pripraviti na umeten način (24).

[Slika 3: Makroskopska struktura kefirnih zrn (25)]

1.5.1 Mikrobiota kefirnih zrn

Mikrobiota kefirnih zrn je kompleksna simbiotična združba MO, in sicer MKB, kvasovk in OKB vpetih v kefiranu, kar označujemo tudi z angleško kratico SCOBY (Symbiotic Community of Bacteria and Yeast). Ta združba predstavlja ekosistem s stabilnimi MO, med katerimi potekajo interakcije ter sinteza bioaktivnih metabolitov (organske kisline, antibiotične substance in bakteriocini), ki so ključni za rast zrn, po drugi strani pa so to spojine, ki zavirajo razvoj patogenih MO (26).
Najštevilčnejše so MKB, ki jih je okoli 80–85 %, nato sledijo kvasovke (med 10–15 %) in najmanj je OKB (približno 5 %). V kefirnih zrnih naj bi bilo med 10^7–10^9 CFU/g MKB, 10^6–10^8 CFU/g kvasovk ter okoli 10^6 CFU/g ocetnokislinskih bakterij (27).

Mikrobiota kefirnih zrn je izredno stabilna. Če se zrna pravilno shranjujejo oz. vzdržujejo, lahko svojo aktivnost ohranijo skozi leta, preživetje in rast posameznih MO pa sta odvisni od same simbioze med njimi. Populacija MO (število in razmerje MO) v kefirnih zrnih se lahko spreminja z izvorom kefirnih zrn, načinom kultivacije in substrata (variabilna sestava mleka), okoljskih pogojev ter od vrste metod, ki jih izberemo za osamitev in identifikacijo MKB ter ostalih MO (28).

1.5.1.1 Mlečnokislinske bakterije

MKB, ki predstavljajo največji delež mikrobiote kefirnih zrn, so heterogena skupina asporogenih anaerobnih, paličastih ali okroglih po Granu pozitivnih bakterij. So del človeške prehrane že od antičnih časov naprej in kot starterske kulture se uporabljajo pri pridelavi hrane in pijač, saj povzročajo mlečnokislinsko fermentacijo. Energijo pridobivajo s fermentacijo, zato ne potrebujejo kisika, potrebujejo pa rastne faktorje za rast (1).

Preglednica II: Najpogostejši sevi MKB, ki sestavljajo mikrobioto kefirnih zrn (18)

<table>
<thead>
<tr>
<th>HOMOFERMENTATIVNI</th>
<th>Laktobacili</th>
<th>Laktokoki</th>
<th>Leukonostoki</th>
<th>Streptokoki</th>
</tr>
</thead>
<tbody>
<tr>
<td>L. acidophilus, L. kefiranofaciens, L. kefirgranum, L. helveticus, L. delbrueckii subsp. bulgaricus</td>
<td>Lc. lactis subsp.lactis, Lc. lactis subsp. cremoris</td>
<td>/</td>
<td>S. thermophilus</td>
<td></td>
</tr>
</tbody>
</table>

| HETEROFERMENTATIVNI | L. kefiri, L. parakefiri, L. brevis, L. plantarum, L. casei, L. paracasei | Lc. lactis | Leu. mesenteroides subsp. mesenteroides, Leu. mesenteroides subsp. dextranicum | / |

MKB lahko najdemo v hrani, rastlinah, ustni votlini, odplakah, genitalnem traktu ter v GIT ljudi in živali. Izkazujejo **proteolitično aktivnost** in imajo sposobnost **adhezije na biotične in abiotične površine**, ki jih kolonizirajo, kar pa predstavlja imunsko bariero pred patogenimi MO. S pomočjo stabilnega in kompleksnega biofilma se adherirajo na mukus, ki je zaščitna plast sluznic, vendar pa njihovo vezavo motijo različni dejavniki, kot so nizek pH, imunski faktorji gostitelja, prisotnost drugih bakterij in sestava mukusne plasti (31).

1.5.1.2 Kvasovke

Kvasovke so **aerobni MO**, običajno nepravilnih oblik, ki proizvajajo CO₂ in etanol. Najpogosteje izolirani rodovi kvasovk iz kefirnih zrn so: Saccharomyces sp., Kluyveromyces sp., Candida sp., Torulaspora sp. in Pichia sp. Kvasovke delimo na tiste, ki fermentirajo laktozo (Candida kefir, Klu. marxianus, Klu. fragilis in Torulaspora kefir) in prevladujejo na zunanjih površini kefirnih zrn, ter na nefermentirajoče kvasovke, ki predstavljajo večji delež (60–100 %) populacije in jih najdemo predvsem v notranjosti (S. cerevisiae, Torulaspora delbrueckii, S. unisporus, S. exigus, Torulopsis holmii in Candida colliculosa). Kvasovke fermentirajo le manjši delež laktoze in njihova fermentacija nima bistvene vloge pri padcu pH vrednosti (30). So izjemnega pomena, saj skupaj z OKB **ohranjajo živost in integriteto MKB**, tako da jim tvorijo nujno potrebne rastne faktorje.
Ker živijo v sožitju, tudi kvasovke in OKB potrebujejo MKB s končnimi presnovnimi produkti, ki jim predstavljajo vir energije (20).

1.5.1.3 Ocetnokislinske bakterije
Tretji tip MO so OKB, ki so po Gramu negativne obligatorne aerobne bakterije, paličaste ali elipsoidne oblike, ki v prisotnosti kisika lahko pretvarjajo etanol v ocetno kislinino. V kefirnih zrnih najdemo bakterije rodu Acetobacter sp. (Acetobacter aceti, Acetobacter rasens in Acetobacter syzygii). Ker oksidirajo laktat in acetat v CO$_2$ in vodo, se poleg ostalih MO uporabljajo kot starterske kulture pri fermentaciji kefirja (32). Njihova naloga je zniževanje pH in s tem ustvarjanje neugodnega okolje za razmnoževanje patogenih MO, izločajo pa tudi polisaharide, ki oblikujejo plast služi in tako mehansko ščitijo zrna (33).

1.5.2 Nastanek kefirnih zrn

![Shematični model tvorbe kefirnih zrn](image-url)

Slika 4: Shematični model tvorbe kefirnih zrn (35)
1.5.3 Detekcija mikroorganizmov v kefirnih zrnih

Za detekcijo in identifikacijo posameznih vrst MO v populaciji poznamo od gojenja odvisne in od gojenja neodvisne metode. Klasične od gojenja odvisne metode temeljijo na genomskih lastnostih MO in vključujejo veliko različnih metod, med katerimi je najpogosteje uporabljeno naključno pomnoževanje polimorfne DNA s PCR (RAPD-PCR). Vendar se od gojenja odvisne metode, ki ne morejo identificirati vseh MO, poleg tega pa zahtevajo veliko časa za gojenje, čedalje bolj opuščajo. Zamenjujejo jih od gojenja neodvisne metode, kot je poliakrilamidna gelska elektroforeza v denaturirajočem gradientu (DGGE), le-ta daje boljši vpogled nad kompleksno mikroblno populacijo. Poleg naštetih tehnik pa za hitro pregled morfološke zgradbe kefirnega zrna uporabljamo vrstični (SEM) in transmisijski elektronski mikroskop (TEM) (18).

S pomočjo SEM vidimo, da je zunanja plast kefirnega zrna groba in nagubana, prekrita večinoma z MKB (paličasti laktobacili in okrogli laktokoki), pa tudi s slojem kvasovk, ki jih vidimo kot ovalne tvorbe. Osrednji del zrna, ki je bolj nestruktuiran in luknjičast, je naseljen predvsem s kvasovkami, opazimo pa tudi paličaste bakterije. Celotno simbiotično združbo obdaja kefiran, ki je razširjen po vseh delih zrna. Razlika je v tem, da so na površini zrna prisotne kvasovke, ki lahko fermentirajo laktozo, v notranjosti pa kvasovke nimajo te sposobnosti. Razporeditev MO je sicer nesimetrična, a sledi določenim vzorcem (36).

1.5.4 Viabilnost mikroorganizmov

Viabilnost je sposobnost razmnoževanja MO v gojišču. Bakterije in kvasovke v kefrinih zrnih imajo načeloma visoko stopnjo preživetja oz. dobro viabilnost skozi daljše časovno obdobje. Vendar njihova viabilnost pade, če so dlje časa podvrženi stresnim faktorjem, kot so nihanje pH vrednosti, prisotnost soli (NaCl), kisika in drugih MO, zamrzovanje, segrevanje oz. temperature nad 40 °C, homogenizacija, izpiranje, sušenje, liofilizacija, neustrezno pakiranje ter neustrezni transportni pogoji. Stabilnost ohranimo s shranjevanjem na nižjih temperaturah (2–8 °C), z dodatkom antioksidantov (askorbinska kislina, cistein hidroklorid, vitamin E, pektin), zmanjševanjem prisotnosti kisika (lovilci zraka v vsebnikih), dodajanjem krioprotektantov (trehaloza) in oblikovanjem FO s
postopkom mikrokapsuliranja. Le tako lahko dosežemo stabilnost FO tekom celotnega roka uporabe in posledično terapevtske učinke (1).

Garrote in sodelavci so ugotovili, da se po liofilizaciji zrn zmanjša presnova laktoze ter spremeni profil bakterij in kvasovk glede na profil pred liofilizacijo. Stopnja preživetja se ob tem zmanjša na 70–85 %. Največja pomankljivost pa je ta, da se viabilnost in aktivnost MO zmanjšata šele med shranjevanjem po liofilizaciji, zato je zelo pomembno, da dodajamo liofiliziranim vzorcem lioprotekatne (povečajo lahko preživetje MO tudi do 100-krat), sušila in antikosidante. Vendar pa imajo izdelki z liofiliziranimi starterskimi kulturami tudi prednosti, saj so bolj priročni, predvsem z vidika shranjevanja in transporta (18).

1.6 UPORABA KEFIRNIH ZRN V FARMAKOLOŠKE NAMENE

Prvi zapisi o farmakoloških učinkih kefirja so se pojavili že stoletja nazaj, saj naj bi bil učinkovit pri zdravljenju tuberkoloze, črevesnih in želodčnih bolezni. Današnje zanimanje za kefir temelji ravno na teh doganjih, poleg tega pa so ga prehranski strokovnjaki ocenili kot varen izdelek z probiotičnimi lastnostmi. Največ zaslug za farmakološke učinke pripisujejo sev L. kefiranofaciens, ki je tudi dominanten sev mikrobiote kefirnih zrn. Z dokazi podprti so farmakološki učinki na GIT, protimikrobni, protivnetni, protiglivični in protimutageni učinki, zniževanje krvnega tlaka, serumske glukoze in holesterola. Deluje tudi antioksidativno ter krepi in pozitivno vpliva na imunski sistem (37).

1.6.1 Farmakološki učinki na gastrointestinalni trakt

Tako kot ostali probiotiki, tudi kefir deluje ugodno na GIT. V študiji, ki so jo izvedli Marquina in sodelavci, so krmlili miške s kefirjem in ugotovili, da se je miškam v tankem in debelem črevesu znatno povečala količina MKB, število enterobakterij in klostridijev pa se je zmanjšalo. S povečanjem števila MKB in prevladu nad patogenimi MO se izboljša in okrepi črevesna flora, s tem pa se zmanjša število epizod diareje, napihnjenosti ali zaprtosti. Dokazali so, da so miši ob uživanju kefirja manj dozvete za gastrointestinalna vnetja (20). V podobni klinični raziskavi, ki pa so jo izvedli na dojenčkih okuženih z bakterijama Shigella spp. ali Salmonella spp., dokažejo raziskovalci znatno hitrejše okrevanje, če je v njihovo prehrano dodan kefir (37).
1.6.2 Protimikrobni in protiglivični učinek
MKB proizvajajo protimikrobne in protiglivične učinkovine, kot so bakteriocini, CO$_2$, vodikov peroksid, etanol in butan-2,3-dion, ki v kefirju varujejo živilo pred okužbo s patogenimi MO. Te iste substance pa pri peroralni ali vaginalni aplikaciji preprečujejo vnetja GIT in vaginalnega trakta. Na splošno kefir izkazuje bakteriostatičen učinek proti bakterijam, ki so po Gramu negativne, in baktericiden učinek proti po Gramu pozitivnim bakterijam (37). Sevi *L. acidophilus*, *L. kefiranofaciens* in *L. thermophilus* izkazujejo protimikrobne učinke predvsem proti *Enterococcus spp.*, *E. coli*, *P. aeruginosa* in *S. aureus*. Raziskovalci so z metodo difuzije v agarju ugotovili, da je protimikrobni učinek kefirja enakovreden učinku ampicilina, azitromicina, ceftriaksona, amoksicilina in ketokonazola ter proti divjim bakterijskim in glivičnim vrstam (30). Prav tako pa je bil dokazan protiglivični učinek kefirana proti kvasovki *C. albicans*, ki povzroča kandidozo (18).

1.6.3 Zniževanje hiperlipidemije
Lin in sodelavci so proučevali koristne učinke probiotičnih bakterij (*L. acidophilus*, *L. bulgaricus* in *L. plantarum*) in kefirana na zniževanje holesterola, trigliceridov in LDL v serumu ter jetrih (18). V študiji je 23 udeležencev prejemalo kapsule s probiotičnimi bakterijami, 15 udeležencev pa jih ni prejemalo. V kontrolni skupini, ki ni prejemala probiotikov, je raven serumskega holesterola ostala ista, in sicer 4,9 mmol$^{-1}$, udeležencem, ki so jemali probiotike pa se je raven serumskega holesterola po 7. tednih znižala iz vrednosti 5,7 na 5,3 mmol$^{-1}$ in po 16. tednih na 5,4 mmol$^{-1}$. Dokazan je mehanizem, po katerem so MKB sposobne vezati holesterol in žolčne kisline, saj encimi, ki jih proizvajajo, pretvarjajo žolčne kisline v dekonjugirano obliko in na ta način se njihova absorbciija zmanjša, posledično pa tudi raven serumskega holesterola (3).

1.6.4 Vpliv na imunski sistem in protitumorni učinek
Kefirna zrna, ki so združba probiotičnih kultur, izkazujejo imunomodulatorni učinek, kar so dokazali raziskovalci. V študijah so namreč opazili, da se miškam, ki so uživale kefir, v GIT in bronhialni sluznici zviša raven protiteles IgA, ki so poglavitna pri preprečevanju vdora patogenov v sluznice. V krvi vežejo tuje molekule, ki pridejo s hrano in vdihanim
zrakom, ter onemogočajo, da se imunski sistem odzove z vnetno reakcijo. Poleg IgA protiteles probiotične bakterije spodbujajo tudi nastanek IgG protiteles, limfocitov, IL-4, IL-10, IL-6 ter TNF-alfa, ki skupaj zavirajo razvoj patogenih bakterij, tumorskih celic, mikrobov in virusov ter tako predstavljajo obrambni mehanizem imunskega sistema. Raziskovalci na podlagi tega zaključujejo, da laktobacili v kefirnih zrnih, predvsem *L. kefiri*, *stimulirajo celice prirojenega imunskega sistema* in tako spodbujajo ali spremenijo specifični, kot tudi nespecifični imunski odziv. Pri miših, ki so uživale kefir, so laktobacili povzročili *apoptozo rakavih celic* in posledično se je *zmanjšala velikost tumorja* (34).

1.7 ALOE VERA

1.7.1 Farmakološke lastnosti izvlečka aloe vere

Vsebuje več kot 75 potencialno aktivnih sestavin:

- vitamine A, B, C in E, ki so antioksidanti in nevtralizirajo kisikove radikale, s tem zmanjšujejo tveganje za razvoj rakavih oboljen in ateroskleroze, ter krepijo delovanje imunskega sistema;
- encim bradikinazo, ki razgrajuje tkivni aktivator vnetja bradikinin in tako zavira vnetje ter zmanjšuje bolečino in oteklino (39);
- polisaharide (glukomanan in acemanan), ki tvorijo sluzi, ki ob zaužitju ali nanašanju prekrijejo želodčno, črevesno in vaginalno sluznico, kar deluje zaščitno. Študija je tudi pokazala antimikotičen učinek aloe vere pri vaginalni aplikaciji, prav tako pa aloe vera gel ne draži vaginalne sluznice (40);
- antrakinone (aloin in emodin), ki delujejo odvajalno in protimikrobno;
minerale (magnezij, kalcij, natrij, kalij, fosfor, železo, krom, cink, baker, mangan in selen), ki so potrebni za normalno delovanje metabolnih in encimskih poti;
- saponine z protimikrobnim, antiseptičnim in čistilnim učinkom;
- AK (esencialne in neesencialne), ki so gradniki mišičnega tkiva, hormonov, encimov in epitelija;
- salcilno kisilno, ki deluje protivnetno, analgetično in keratolitično;
- rastlinske sterole (kampesterol, lupeol, beta-sitosterol), vsi izkazujejo protivnetni učinek, lupeol pa tudi analgetični in antiseptični učinek;
- fosfolipide (holin in inozitol), ki so sestavni del celične membrane in ji omogoča boljšo fluidnost, s tem pa boljšo elastičnost žilja (41).

1.7.2 Aloe vera gel

Veliko farmakoloških lastnosti, ki jih pripisujejo A. veri, se nanaša predvsem na gel oz. polisaharida, ki se nahajata v notranjosti (parenhimu) listov rastline. Tu najdemo prozoren gel, ki je sestavljen iz 99 % vode, polisaharidov, aminokislin, lipidov, sterolov in vitaminov. Gel obdajata skrajno zunanjana debela plast, sestavljena iz 15–20 celic, ki sintetizirajo proteine in OH, ter srednja plast z antrakinoni in glikozidi (38) (slika 5). Polisaharida glukomanan in acemanan imata ugodne lastnosti, kot so visoka stabilnost, netoksičnost, hidrofilnost, biorazgradljivost, lahko se preoblikujeta v gel in kemično se enostavno modificirata. Aloe vera gel izkazuje velik potencial kot PU, lahko pa služi kot dostavni sistem različnim učinkovinam in FO (42).

Gel pridobivajo tako, da ročno ločijo trdo skorjo od mehke sredice, pri tem pa se notranji del ne sme kontaminirati z antrakinonskimi sestavinami skorje. Pridobi se 100% aloe vera gel, ki je gost, a nestabilen, še posebej pri visokih temperaturah, ali pa v prisotnosti kislin in encimov, zato je potrebna še dodatna obdelava s postopkom pasterizacije in dodajanja konzervansov, s čimer se poveča njegova stabilnost, a zmanjša kakovost (42).

V študiji Yagija, kjer so raziskovali vpliv izvlečkov A. vera v kombinaciji z MKB, so dognali da antrakinoni in polisaharidi predstavljajo pomemben prehranski vir za rast MKB, saj se v GIT ne prebavljajo, zato služijo kot neke vrste prebiotik (41).
2. NAMEN DELA
Eden od možnih načinov uporabe probiotikov je vaginalna aplikacija z namenom zdravljenja bakterijske disbioze, zato je naš glavni cilj vgraditev MO iz kefirja v 100% gel aloe vera, z namenom posnemanja poltrdne FO za vaginalno uporabo.

Za učinkovitejšo dosego tega cilja je namen magistrske naloge preliminarno določiti število ter viabilnost MKB, kvasovk in OKB v kefirnih zrnih mlekarne Krepko v odvisnosti od časa pri različnih skladiščnih pogojih. Vzorce bomo shranjevali pri različnih temperaturah (4 °C, sobna temperatura\(^1\) in 37 °C) ter v aerobnem in anaerobnem okolju. Viabilnost MO bomo spremljali prek osmih tednov z nacepljanjem na trdna gojišča (MRS, YGC in GYC). Pred tem bomo zrna homogenizirali ali liofilizirali.

Po določitvi optimalnih pogojev shranjevanja bomo preverili tudi viabilnost MO v aloe vera gelu, zopet v odvisnosti od skladiščnih pogojev oz. pri treh različnih temperaturah.

\(^1\) Ta je znašala med 22 in 24 stopinj.
2.1 DELOVNE HIPOTEZE
Glede na rezultate dosedanjih raziskav, smo v okviru magistrske naloge postavili naslednje hipoteze:

- kefirna zrna bodo vsebovala združbo MKB, kvasovk in OKB, med katerimi bodo prevladovale MKB;
- viabilnost se bo spreminjala v odvisnosti od časa skladiščenja ter od skladiščnih pogojev (temperatura, dodatek 10% saharoze ali raztopine PBS, prisotnost oz. odsotnost kisika);
- po liofilizaciji bo v kefirnih zrnih znatno manjši delež vode in posledično zmanjšana stopnja preživetja MO;
- viabilnost MO bo najboljša pri vzorcih, ki jih bomo skladiščili na 4 °C in najslabša pri vzorcih, skladiščenih na 37 °C;
- viabilnost MO se bo po vgradnji v 100% aloe vera gel ohranila in pH poltrdnega izdelka bo rahlo kisel.
3. MATERIALI IN METODE

3.1 MATERIALI

3.1.1 Kemikalije

Preglednica III: Pregled uporabljenih kemikalij

<table>
<thead>
<tr>
<th>KEMIKALIJA</th>
<th>PROIZVAJALEC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agar</td>
<td>Sigma-Aldrich, St. Louis, ZDA</td>
</tr>
<tr>
<td>CaCO$_3$</td>
<td>Riedel-de Häen, Hannover, Nemčija</td>
</tr>
<tr>
<td>Etanol, 96%</td>
<td>Sigma-Aldrich, St. Louis, ZDA</td>
</tr>
<tr>
<td>Glukoza</td>
<td>Sigma-Aldrich, St. Louis, ZDA</td>
</tr>
<tr>
<td>Kloramfenikol [0,1 mg/ml]</td>
<td>Sigma-Aldrich, St. Louis, ZDA</td>
</tr>
<tr>
<td></td>
<td>Kloramfenikol pripravimo tako,</td>
</tr>
<tr>
<td></td>
<td>da v centrifugirko natehtamo 5 g</td>
</tr>
<tr>
<td></td>
<td>kloramfenikola, raztopimo v 50 ml</td>
</tr>
<tr>
<td></td>
<td>96% etanola, prefiltriramo skozi</td>
</tr>
<tr>
<td></td>
<td>filter s porami velikosti 0,22 μm</td>
</tr>
<tr>
<td></td>
<td>ter shranjujemo v hladilniku</td>
</tr>
<tr>
<td>Kvasni ekstrakt</td>
<td>Sigma-Aldrich, St. Louis, ZDA</td>
</tr>
<tr>
<td>MRS</td>
<td>Merck, Darmstadt, Nemčija</td>
</tr>
<tr>
<td>Saharoza, 10%</td>
<td>Sigma-Aldrich, St. Louis, ZDA</td>
</tr>
</tbody>
</table>

3.1.2 Laboratorijska oprema

Preglednica IV: Pregled laboratorijske opreme

<table>
<thead>
<tr>
<th>OPREMA</th>
<th>PROIZVAJALEC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anaerobna shranjevalna vrečka Gaspak EZ</td>
<td>Becton Dickinson, Sparks, ZDA</td>
</tr>
<tr>
<td>Analitska tehtnica</td>
<td>A&D Instruments Ltd, Abingdon, Anglija</td>
</tr>
<tr>
<td>Avtoklav</td>
<td>Tuttnauer autoclave, New York, ZDA</td>
</tr>
<tr>
<td>Filter Minisart 0,22 μm</td>
<td>Sigma-Aldrich, St. Louis, ZDA</td>
</tr>
<tr>
<td>Homogenizator GentleMACS™</td>
<td>Miltenyi Biotec, Bergisch Gladbach,</td>
</tr>
<tr>
<td>Dissociator + vsebini za homogenizacijo</td>
<td>Nemčija</td>
</tr>
<tr>
<td>Injekcijska brizga</td>
<td>Sigma-Aldrich, St. Louis, ZDA</td>
</tr>
<tr>
<td>Inkubator (30 °C)</td>
<td>Bandelin electronic, Berlin, Nemčija</td>
</tr>
<tr>
<td>Inkubator (37 °C)</td>
<td>Binder, Tuttingen, Nemčija</td>
</tr>
<tr>
<td>Liofilizator LIO 2000</td>
<td>Kambič, Semič, Slovenija</td>
</tr>
<tr>
<td>Magnetno mešalo Rotamix</td>
<td>Tehtnica, Železniki, Slovenija</td>
</tr>
<tr>
<td>pH lističi</td>
<td>Riedel-de Häen, Hannover, Nemčija</td>
</tr>
<tr>
<td>Precizna tehtnica</td>
<td>Tehtnica, Železniki, Slovenija</td>
</tr>
<tr>
<td>Stresalnik Vibromix 10</td>
<td>Tehtnica, Železniki, Slovenija</td>
</tr>
<tr>
<td>Mikrobiološka komora</td>
<td>Labcaire system, Clevedon, Anglija</td>
</tr>
</tbody>
</table>
3.1.3 Trdna gojišča, pufri in raztopine

Gojišče de Man, Rogosa in Sharpe (MRS)	MRS	52,2 g
Agar	15,0 g	
H₂O	1000 ml	

PRIPRAVA: V steklenico natehtamo MRS in agar, dopolnimo z vodo do 1000 ml, mešamo na magnetnem mešalu na 500 obratov/min do zbistritve raztopine. Nato avtoklaviramo 15 min pri 121 °C in nadtlaku 1 bar, počakamo da se vsebina v steklenici nekoliko ohladi in polnimo v petrijevke. V roku 30 min dobitimo trdo gojišče MRS. Tako pripravljena gojišča hranimo v temnem prostoru na 2–8 °C.

Gojišče kvasnega ekstrakta, glukoze in kloramfenikola (YGC)	Glukoza	20,0 g
Kvasni ekstrakt	5,0 g	
Agar	14,9 g	
Kloramfenikol	4 ml	
H₂O	1000 ml	

PRIPRAVA: V steklenico natehtamo vse praškaste komponente, dopolnimo z vodo do 1000 ml, mešamo na 500 obratov/min do zbistritve raztopine. Avtoklaviramo pri istih pogojih kot pri prejšnjem gojišču in po avtoklaviranju počakamo, da se raztopina ohladi na približno 70 °C ter dodamo antibiotik kloramfenikol za...
zatiranje rasti bakterijskih kolonij. Polnimo v petrijeve plošče, po približno 30 min
dobimo trdno gojišče YGC. Prav tako hranimo v temnem prostoru na 2–8 °C.

Na ploščah YGC, ki so bistre in rahlo rumene barve, gojimo in štejemo kvasovke.
Inkubiramo jih 72–120 ur na temperaturi 25–30 °C, pH pri 25 °C pa je okoli 6,6 (44).

Gojišče glukoze, kvasnega ekstrakta in Glukoza	50,0 g	
CaCO3 (GYC)	Kvasni ekstrakt	10,0 g
CaCO3	5,0 g	
Agar	20,0 g	
96% etanol	70 ml	
H2O	1000 ml	

PRIPRAVA: V steklenico natehtamo vse praškaste komponente, dopolnimo z vodo do 1000 ml, mešamo na 500 obratov/min do zbistritve, avtoklaviramo pri enakih pogojih kot pri prvem in drugem zgoraj navedenem gojišču, počakamo, da se ohladi na približno 70 °C in dodamo 96% etanol, polnimo v petrijeve plošče, trda gojišča hranimo v temnem prostoru na 2–8 °C.

10 x raztopina PBS (Fosfatni pufer) | NaCl | 80,1 g
| KCl | 2,0 g
| Na₂HPO₄ · 2H₂O | 17,8 g
| KH₂PO₄ | 2,7 g
| dH₂O | do 1000 ml

Z dodajanjem HCl umerimo pH na vrednost 7,4

❖ PRIPRAVA: 10 x raztopina PBS je bila že predhodno pripravljena iz zgoraj navedenih komponent in avtoklavirana. 1 x PBS, ki ga potrebujemo pri našem delu, pripravimo tako, da odmerimo 50 ml predhodno pripravljenega 10 x PBS, dopolnimo z vodo do 500 ml, še enkrat avtoklaviramo 15 min, pri 121 °C in nadtlaku 1 bar ter ohladimo.

Raztopina 10% saharoze | 10% saharoze | 5,0 g
| dH₂O | 50 ml

❖ PRIPRAVA: Natehtamo praškasto 10% saharozo, raztopimo v 50 ml destilirane vode in prefiltriramo skozi filter s porami velikosti 0,22 μm ter shranjujemo v hladilniku.

3.1.4 Vzorec kefirnih zrn in aloe vera gela

- Pri izdelavi magistrske naloge smo kot vzorec uporabili kefirna zrna, ki so last Mlekarne Krepko (Kele&Kele, d. o. o., Logatec, Slovenija).
- Homogenizat kefirnih zrn smo vgradili v Aloe vera 100% gel, znamke Fruit of the Earth, Teksas, ZDA (sestava: aloe vera gel, trietanolamin – emulgator, tokoferil acetat – antioksidant, karbomer – sredstvo za zgoščevanje, tetranatrijev edetat – keliorno sredstvo, diazolidinil urea in DMDM hidantoin – konzervansa).
3.2 NAČRT EKSPERIMENTALNEGA DELA
Laboratorijsko delo v okviru magistrske naloge je zajemalo tri sklope dela:

I. Mikrobiološki del
Kefirna zrna smo homogenizirali ali liofilizirali ter resuspendirali v PBS ali raztopini 10% saharoze. Tako pripravljene vzorce smo hranili na 4 °C, sobni temperaturi in na 37 °C pri aerobnih ali anaerobnih pogojih, ter jih vsak teden v obdobju osmih tednov z metodo kapljanja nacepili na trdna gojišča. Po cepitvi smo vse plošče inkubirali 72 ur v inkubatorju na 30 °C. Po določitvi optimalnih pogojev smo zopet izvedli postopek homogenizacije ter homogenizat kefirnih zrn vgradili v aloe vera gel. Redčen gel smo nacepili na trdna gojišča, inkubirali na 30 °C in v obdobju dveh tednov spremljali viabilnost MO.

II. Analitski del
Po inkubaciji smo ročno šteli kolonije, ki so zrastle.

III. Statistični del
Zbrane podatke smo obdelali in predstavili v grafični obliki s pomočjo programov Microsoft Excel 2013 in GraphPad Prism 6.

3.3 METODE
3.3.1 Homogenizacija
Da smo lahko spremljali mikrobiološko sestavo kefirnih zrn, smo jih morali najprej homogenizirati. Kefirna zrna smo dobili zapakirana v plastičnem vedru, ki smo ga pred homogenizacijo shranili na 4 °C. V preliminarnem poskusu smo vzorce za homogenizacijo pripravili tako, da smo v aseptičnih pogojih v mikrobiološki komori (Labcaire system, Clevedon, Anglija) natehtali v dve 15-ml epruveti po 1 g zrn (približno 3 do 4 zrna) in jim dodali po 5 ml PBS.
Uporabili smo homogenizator GentleMACS™ Dissociator (Miltenyi Biotec, Bergisch Gladbach, Nemčija), na katerega imamo na voljo več programov oz. načinov homogeniziranja (46) (*slika 6*). V preliminarnem poskusu smo preizkušali dva, in sicer RNA_01.01 in protein_01.01. Po vsakem programu smo homogenizirali dve ponovitvi vzorcev, pri čemer smo oba vzorca homogenizirali dvakrat, z vmesnim nekaj minutnim hlajenjem na ledu. Z vizualnim pregledom smo ugotovili, da so kefirna zrna bolj homogenizirana po programu RNA_01.01. V nadaljevanju smo število homogenizacij po programu RNA_01.01 povečali na šestkrat, kar se je izkazalo za najustreznejše. V glavnem poskusu smo uporabljali le program RNA_01.01, na podlagi doganj iz preliminarnega poskusa.

V glavnem poskusu smo homogenizacijo izvedli na enak način. K 1 g kefirnih zrn smo dodali 5 ml PBS ali 10% raztopine saharoze. Vzorec smo šestkrat homogenizirali, vsakič po eno minuto, z vmesnim nekaj minutnim hlajenjem na ledu. Postopek smo ponovili petkrat in homogenizate združili v 50 ml centrifugirki. Ob koncu smo torej imeli dve centrifugirki – v prvi 25 ml homogenizata kefirnih zrn s suspenzijo PBS in v drugi 25 ml homogenizata z 10% raztopino saharoze.

Slika 6: Homogenizator GentleMACS™ Dissociator (46)

Vzorce smo ves čas homogenizirali v 50-ml vsebnikih oznake M (Miltenyi Biotec, Bergisch Gladbach, Nemčija), ki omogočajo homogenizacijo vzorcev s prostornino od 500 μl do 10 ml. Vsebnik je zasnovan tako, da je v kombinaciji s homogenizatorjem možno doseči zelo intenzivno homogenizacijo vzorcev, kot so tkiva, proteini, živalski organi, prav
tako pa je mogoče tudi izolirati biomolekule, kot sta mRNA ali celotna RNA. Na sliki 7 opazimo, da sta v vsebnikih posebej zasnovana rotor in stator, ki zagotavljata učinkovito homogenizacijo ter membransko tesnilo, ki omogoča, da lahko odpipetiramo vzorec brez odpiranja vsebnikov. Vsebniki zagotavljajo varno in sterilno rokovanje z vzorcem (46).

Slika 7: M-vsebniki, v katerih homogeniziramo vzorec (46)

Vsebnike smo pričvrstili v odprtini na homogenizatorju (*slika 8*) in izvedli homogenizacijo po ustreznem programu.

Slika 8: M-vsebniki, nameščeni na homogenizatorju (47)
3.3.2 Liofilizacija

Želeli smo preveriti viabilnost MO ne samo v homogenizatu kefirnih zrn, ampak tudi v liofilizatu, saj smo pričakovali spremembe v viabilnosti MO, ki so v zrnih.

Liofilizacija je postopek, pri katerem s sušenjem z zamrzovanjem odstranjujemo vodo iz organskih in bioloških vzorcev, ki so termolabilni (48).

Postopek liofilizacije je sestavljen iz treh faz:

- **primarno sušenje** – v tej fazi, ki je tudi najdaljša (do nekaj dni), znižamo tlak na nekaj milibarov, tako dovedemo materialu toploto in na ta način sublimira okoli 80–85 % ledu (vode). Tu je temperatura okoli –50 °C.

- **sekundarno sušenje** – v zadnji fazi odstranimo še preostalo vodo, ki je lahko v obliki vezane vode ali pa kot ostanek topila (rezidualna voda). Tu se poveča temperatura celo nad 0 °C, saj na ta način prekinemo interakcije med zamrznjenim materialom in vodnimi molekulami. Toplota se dovaja prek segrevanja polic, s kondukcijo in z radiacijo. Voda se odstranjuje s procesom desorpcije in difuzije. V primerjavi s primarnim sušenjem je faza sekundarnega sušenja bistveno krajsa. Ob koncu postopka dobimo suho snov, ki vsebuje samo še okoli 5 % vode in ima na površini pore, kar omogoča povečano afiniteto do topila ob vnovičnem stiku. Namen sekundarnega sušenja je namreč ta, da se zmanjša vsebnost vode do te mere, da je onemogočena mikrobiološka rast (49).
Liofilizacija ima veliko prednosti, kot so izboljšanje dolgotrajne stabilnosti izdelka zaradi nizkih temperatur med procesom, sušenje v odsotnosti kisika in imobilizacija vzorca med zamrzovanjem. Na ta način se zmanjša možnost oksidacije. Liofilizat je porozen in liofilen, kar povzroča boljše raztapljanje vzorca. Z izboljšanjem stabilnosti se izboljšajo pogoji shranjevanja in transporta, to pa je pomembno predvsem pri bioloških snoveh, kot so bakterijske kulture, biološka zdravila, antibiotiki, cepiva, tkivni ekstrakti in transplantacijska tkiva. Postopek ni razširjen le pri pripravi medicinsko-farmacevtskih in veterinarnih izdelkov (priprava bioloških vzorcev, skladiščenje bakterijskih sevov, priprava gojišč itd.), ampak tudi na področju prehrane in živilstva (liofilizirane starterske kulture) (50). Glavna pomanjkljivost pa je ta, da gre za dolgotrajen in relativno drag proces.

Pri eksperimentalnem delu smo želeli preveriti viabilnost MO v vzorcih po liofilizaciji, prav tako pa smo tudi preverili, kolikšen delež vode se dejansko odstrani iz kefirnih zm. Uporabili smo liofilizator znamke LIO 2000 (Kambič, Semič, Slovenija) (slika 9). V glavnem poskusu smo liofilizirali 48 vial z vzorci (24 vial suspenzije s PBS in 24 vial z raztopino 10% saharoze), kot kontrolni vzorec pa smo uporabili 500 μl čiste raztopine 10% saharoze.

Slika 9: Liofilizator LIO 2000, Kambič (51)
3.3.3 Skladiščenje vzorcev

3.3.3.1 Vzorci v preliminarnem poskusu
Po homogenizaciji, po programih RNA_01.01 in protein_01.01, smo v preliminarnem poskusu napipetirali po 750 μl vzorca v 1,5-ml mikrocentrifugirki in jih shranili na 4 °C ali na 37 °C. Preostanek suspenzij smo isti dan nacepili na gojišča. Postopek homogenizacije smo izvedli tudi s šestkratno ponovitvijo homogenizacije s programom RNA_01.01.

3.3.3.2 Vzorci v glavnem poskusu
V glavnem poskusu smo po 500 μl homogenizata ali kvotirali v 1,5-ml mikrocentrifugirke in 2 ml viale. Pripravili smo 24 mikrocentrifugirg s homogenizatom v PBS, 24 mikrocentrifugirg s homogenizatom v 10 % saharoze, 24 vial s homogenizatom v PBS in 24 vial s homogenizatom v 10 % saharoze. Vzorci v vialih so bili predhodno liofilizirani, kot smo opisali v prejšnjem podpoglavju. Vzorce smo skladiščili pri treh različnih temperaturah (4 °C, sobna temperatura, 37 °C) skozi obdobje 8 tednov (slika 10). Pri vsakem od temperaturnih pogojev smo hranili 8 mikrocentrifugirg s PBS, 8 mikrocentrifugirg z raztopino 10% saharoze, 8 vial s PBS in 8 vial z 10% saharozo.

Slika 10: Pripravljeni vzorci za skladiščenje na treh različnih temperaturah
3.3.4 Metoda kapljanja

MO lahko nacepimo na trdna ali v tekoča gojišča, za nacepljanje pa potrebujemo pipeto ali cepilno zanko. Pri določanju viabilnosti na trdnih gojiščih moramo paziti, da so kolonije dovolj narazen, da jih lahko preštejemo – pri tem govorimo o cepljenju do posameznih kolonij. Kadar pa MO rastejo enakomerno po celo površini trdnega gojišča in ne moremo razločevati med posameznimi kolonijami, govorimo o konfluentni rasti. Pri našem delu smo vse vzorce cepili do posameznih kolonij z metodo kapljanja na trdna gojišča (ang. drop plate method; *slika 11*).

Najprej smo pripravili redčitveno vrsto tako, da smo odpipetirali po 100 μl vzorcev v nove 1,5-ml mikrocentrifugirke in dodali v vsako po 900 μl PBS. Liofilizirane vzorce smo predhodno resuspendirali z 500 μl destilirane vode. 10-krat redčeno bakterijsko suspenzijo smo dobro premešali (5 sek, Vibromix 10, Tehtnica, Železniki, Slovenija) in 100 μl ponovno redčili v novi mikrocentrifugirke z 900 μl PBS. Postopek smo ponavljali, vse dokler nismo prišli do 8. mikrocentrifugirke oz. pripravili 10⁸ redčitev.

Nato smo si pripravili še plošče oz. gojišča, tako da smo vsako ploščo razdelili na 4 kvadrante (v prvem kvadrantu smo kapljali vzorce z redčitvijo 10⁻¹, v drugem 10⁻² in tako naprej). Iz vsake mikrocentrifugirke v redčitveni vrsti smo v ustrezen kvadrant odpipetirali 5 kapljic po 10 μl vzorca.

Pri tem smo pazili, da so bile kapljice med seboj ločene. Delo je potekalo v aseptičnih pogojih v mikrobiološki komori (Labcaire system, Clevedon, Anglija) (52).

3.3.5 Inkubacija plošč

Po končanem nacepljenju smo v preliminarnem poskusu inkubirali plošče v anaerobnih shranjevalnih vrečkah Gaspak EZ (Becton Dickinson, Sparks, ZDA) ter pri aerobnih pogojih. V glavnem poskusu pa le aerobno. Vse plošče smo oblepili s parafilmom in jih inkubirali 72 h v inkubatorju (Bandelin electronic, Berlin, Nemčija) na 30 °C. Po inkubaciji smo poleg štetja opazovali tudi izgled izraslih kolonij (velikost, barva, oblika in površina) MKB, kvasovk ter OKB.
3.3.6 Merjenje pH vrednosti
Po 8 tednih smo vzorcem, skladiščenim na treh različnih temperaturah (homogenizatom in liofilizatom v PBS in 10% saharozi), pred zadnjo cepitvijo izmerili pH vrednosti s pH lističi (Riedel-de Häen, Hannover, Nemčija).

3.3.7 Določanje števila mikroorganizmov in statistična obdelava rezultatov
Po inkubaciji vzorcev smo prešteli izrasle kolonije, ki so jih tvorili živi MO. Štetja smo se lotili ročno, s prostim očesom, za vsako kapljico posebej. Kot števno redčitev smo obravnavali tisto, pri kateri je iz ene kaplje zraslo od 3 do 33 kolonij. Rezultate smo vpisovali v preglednice v programu Microsoft Excel 2013, kjer smo glede na povprečno število kolonij vsake posamezne kapljice in z upoštevanjem redčitve izračunali število kolonijskih enot na enoto površine (cm²) po spodnji enačbi (53). Na grafih smo zaradi boljše preglednosti prikazali logaritemske vrednosti.
\[\text{LOG} \left[\frac{\text{CFU/cm}^2}{\text{cm}^2} \right] = \text{LOG} \left[\left(\frac{\text{CFU}}{\text{VK}} \right) \times R \times \left(\frac{V}{S} \right) \right] \]

Legenda:

\begin{itemize}
 \item CFU………………..povprečno število kolonijskih enot pri redčitvi R
 \item \(V_K\)………………..volumen ene kapljice (10 \(\mu l\))
 \item R……………………redčitve \((10^1, 10^2, 10^3\ldots)\)
 \item V……………………končni volumen ob redčenju (1 ml)
 \item S……………………površina razlitih kapljic (1.267 cm\(^2\))
\end{itemize}

V nekaterih primerih je bila določitev natančnega števila kolonij nemogoča, ker so se v dveh zaporednih redčitvah pojavile najprej konfluentne oz. neštevne kolonije pri prvi redčitvi in popolna odsotnost kolonij pri naslednji redčitvi. Tu smo lahko število določili le okvirno, in sicer smo predpostavili prisotnost ene kolonije pri kofluentni redčitvi. Te meritve smo na grafih označili s črno barvo in predstavljajo zgolj oceno vrednosti. Rezultate smo grafično obdelali s programom GraphPad Prism 6, na grafih pa smo prikazali standardno deviacijo in napako.

3.3.8 Vgradnja homogenizata kefirja v aloe vera gel

V zadnjem delu eksperimentalnega dela smo se lotili vgradnje homogenizata kefirnih zrn v gel aloe vere (Fruit of the Earth, Teksas, ZDA) s ciljem posnemanja poltrdne FO za vaginalno uporabo. Kefirna zrna smo homogenizirali v PBS na enak način kot zgoraj in tako pridobili 25 ml homogenizata. Takoj po homogenizaciji smo po 500 \(\mu l\) alikvote preneseli v 1,5-ml mikrocentrifugirkne in jih shranili na 4 °C, 37 °C in pri sobni temperaturi (pozitivna kontrola viabilnosti). Na plošče smo jih cepili na enak način kot zgoraj, inkubirali 120 ur pri 30 °C ter prešteli kolonije, ki so zrastle. Nacepljanje smo ponovili čez en in čez dva tedna.

Zatem smo si pripravili dve čaši in v vsako z injekcijsko brizgo odmerili po 40 ml aloe vera gela. V prvo čašo smo odpipi terali 10 ml raztopine PBS, v drugo pa 10 ml homogenizata kefirnih zrn. Vsebino čaš smo dobro premešali s pomočjo brizge. 1 ml gela z vključenim homogenizatom ali PBS (kontrola) smo prenesli v 15-ml centrifugirko in dodali 9 ml PBS ter par minut mešali na stresalniku. Nadaljnje redčenje smo izvedli v 1,5-ml mikrocentrifugirkah (100 \(\mu l\) vzorca + 900 \(\mu l\) PBS). Na ta način smo zopet naredili
redčitveno vrsto od 10^{-1} do 10^{-8}. Redčitve smo cepili na plošče ter inkubirali 120 ur na 30 °C (cepitev ob času 0).

Vzorce gela (1 ml) smo shranili v 15-ml centrifugirkah pri 4 °C, 37 °C in na sobni temperaturi. Po enem in dveh tednih smo vzorce nacepili, kot je opisano zgoraj in inkubirali 120 ur na 30 °C. Vzorcem gela s homogenizatom kefirja in brez smo pred nacepljanjem pomerili tudi pH vrednost.
4. REZULTATI

4.1 REZULTATI PRELIMINARNEGA POSKUSA

V preliminarnem poskusu (slika 12), kjer smo preizkušali programa oz. načina homogenizacije ter skladiščne pogoje, smo ugotovili, da sprostimo največji delež mikrobiote iz kefirnih zrn, če na homogenizatorju uporabimo program RNA_01.01, kakor smo sklepali že po vizualnem izgledu naših homogenizatov. Ugotovimo, da je število določenih MKB in kvasovk po cepitvi še višje, kadar vzorec homogeniziramo šestkrat namesto dvakrat, in kadar plošče inkubiramo v aerobnem okolju. Stopnja preživetja OKB pa je nekoliko višja, če vzorce homogeniziramo le dvakrat in plošče inkubiramo pri aerobnih pogojih.

Slika 12: Preliminarni poskus – ugotavljanje optimalnega načina homogenizacije in skladiščnih pogojev.

1: Dvakratno homogeniziranje pri programu protein_01.01; shranjevanje v aerobnem okolju.
2: Dvakratno homogeniziranje pri programu RNA_01.01; shranjevanje v aerobnem okolju.
3: Šestkratno homogeniziranje pri programu RNA_01.01; shranjevanje v aerobnem okolju.
4: Šestkratno homogeniziranje pri programu RNA_01.01; shranjevanje v anaerobnem okolju (ni bilo izvedeno pri kvasovkah)
V preliminarnem poskusu smo preverjali tudi viabilnost homogenizata kefirja (homogeniziranega s programom RNA_01.01), shranjenega 1 teden na 4 °C in na 37 °C.

Ugotovili smo, da viabilnost MKB na 4 °C ostane praktično enaka \(10^7\) CFU/cm², pri 37 °C pa značilno pade \(10^6\) CFU/cm². Število kvasovk pri obeh temperaturah pade (iz \(10^7\) CFU/cm² na \(10^5\) oz. \(10^4\) CFU/cm²), pri OKB pa je viabilnost pri 4 °C nespremenjena \(10^7\) CFU/cm²), pri 37 °C pa viabilnost pade, vendar manj kakor pri kvasovkah \(10^5\) CFU/cm²) (sliki 13 in 14).

Slika 13: Viabilnost v odvisnosti od časa shranjevanja na 4 °C

Slika 14: Viabilnost v odvisnosti od časa shranjevanja na 37 °C
4.2 REZULTATI GLAVNEGA POSKUSA

Ocenjevali smo viabilnost MO v homogeniziranih kefirnih zrnih v času 8 tednov na treh različnih temperaturah (4 °C, sobna temperatura, 37 °C). Rezultati so ponazorjeni v obliki grafov, kjer je viabilnost prikazana kot log CFU/cm² v odvisnosti od časa.

4.2.1 Viabilnost mikroorganizmov na 4 °C

Iz spodnjih grafov je razvidno (sliki 15 in 16), podobno kakor pri preliminarnem poskusu, da je v zrnih največ MKB (10⁷ CFU/cm²). Njihova viabilnost je najboljša pri 4 °C tako v homogenizatu, pripravljenem v PBS, kakor tudi v 10% raztopini saharoze, saj ta skozi obdobje osmih tednov ostaja praktično nespremenjena.

Prav tako ostaja konstantna tudi viabilnost kvasovk pri obeh homogenizatih, giblje se v obomočju med 10⁶ in 10⁷ CFU/cm², z nekaj vmesnimi nihanji.

Najbolj spremenljiva viabilnost pa je pri OKB, ki predstavljajo najmanjši delež in so po rezultatih sodeč najmanj stabilne. Najbolj drastičen padec viabilnosti vidimo že v prvih dveh tednih pri homogenizatu v PBS (iz vrednosti 10⁷ na 10⁴ CFU/cm²), nato pa viabilnost nekoliko stabilizira. Pri homogenizatu v 10% saharozi je začetna viabilnost OKB manjša kakor v PBS (10⁵ CFU/cm²). Po 3 tednih opazimo dvig viabilnosti na vrednost, ki je večja od začetne (10⁶ CFU/cm² – verjetno posledica eksperimentalne napake) in nato zapet padec. Ugotovimo, da so vrednosti v 10% saharozi na koncu poskusa enake kakor v PBS.

Lahko rečemo, da se viabilnost vseh MO pri 4 °C tako pri homogenizatu v PBS, kakor tudi pri homogenizatu v 10% saharozi zelo malo spreminja in je zelo visoka.
Slika 15: Viabilnost MO v odvisnosti od časa v homogenizatu kefirja v PBS na 4 °C

Slika 16: Viabilnost MO v odvisnosti od časa v homogenizatu kefirja v 10% saharozi na 4 °C
Po liofilizaciji vzorcev, pripravljenih v PBS in v 10% saharozi, viabilnost po pričakovanjih pade tako pri bakterijah, kakor tudi pri kvasovkah (sliki 17 in 18). V primerjavi s homogenizatom v suspenziji je največji padec viabilnosti po liofilizaciji mogoče opaziti pri kvasovkah, saj vrednost v 10% saharozi pade kar na \(10^3\) CFU/cm\(^2\), v PBS pa na \(10^4\) CFU/cm\(^2\).

MKB je tudi manj \(10^5\)–\(10^6\) CFU/cm\(^2\), vendar je viabilnost skozi celotno obdobje še vedno relativno konstantna pri obeh homogenizatih.

Vrednosti pri OKB najbolj nihajo, ampak če primerjamo z vrednostmi pri homogenizatu v suspenziji, padec ni več tako drastičen. Pri homogenizatu v PBS ostaja vrednost na začetku in na koncu poskusa celo primerljiva (\(10^4\) CFU/cm\(^2\)), pri saharozi pa pade na \(10^3\) CFU/cm\(^2\).

Slika 17: Viabilnost MO v odvisnosti od časa v liofilizatu homogenizata kefirja v PBS na 4 °C
4.2.2 Viabilnost mikroorganizmov na sobni temperaturi

Pri homogenizatih shranjenih na sobni temperaturi ugotovimo, da se stopnja preživetja MKB, glede na tiste shranjene na 4 °C v PBS, ne spremeni in je prav tako konstantna skozi celoten poskus. Zmanjša pa se v 10% saharozi in postopoma pada na 10^5 CFU/cm2 (sliki 19 in 20).

Viabilnost kvasovk na sobni temperaturi tako v PBS, kakor v 10% saharozi na začetku izrazito pade, nato pa je v 10% saharozi konstanta do konca eksperimentalnega dela (10^6 CFU/cm2). V PBS pa opazimo padce in dvige skozi celoten čas (predvsem v 28. dnevu, kjer je vrednost 10^4 CFU/cm2), kar bi bilo lahko posledica eksperimentalne napake, saj se viabilnost potem ponovno izboljša.

Prav tako pade viabilnost z višanjem temperature tudi pri OKB, kar se sklada s preliminarnim poskusom. Stopnja preživetja je boljša v PBS (10^5 CFU/cm2) kot v 10% saharozi (10^3 CFU/cm2). Vrednosti nihajo, zanimivo je to, da opazimo približno ob enakem času (med 28. in 35. dnevom) dvig vrednosti in nato izrazit padec.
Slika 19: Viabilnost MO v odvisnosti od časa v homogenizatu kefirja v PBS na sobni temperaturi

Slika 20: Viabilnost MO v odvisnosti od časa v homogenizatu kefirja v 10% saharozi na sobni temperaturi
Po liofilizaciji in shranjevanju vzorcev na sobni temperaturi v PBS ugotovimo, da se viabilnost MKB in kvasovk v primerjavi z liofilizati shranjenimi na 4 °C praktično ne spremeni. Vidimo tudi, da viabilnost med poskusom ostaja konstantna (*sliki 21 in 22*).

OKB v liofilizatu homogenizata v PBS po sedmih tednih ne zasledimo več. Še večje razlike opazimo v 10% saharozi, saj po 7 tednih ni več mogoče zaslediti niti bakterij niti kvasovk. Tudi začetne vrednosti viabilnosti so manjše v 10% saharozi.

Slika 21: Viabilnost MO v odvisnosti od časa v liofilizatu homogenizata kefirja v PBS na sobni temperaturi
4.2.3 Viabilnost mikroorganizmov na 37 °C

Po pričakovanjih ugotovimo, da imajo najslabšo viabilnost vzorci homogenizata kefirja, ki so bili skladiščeni na 37 °C, kar vidimo na slikah 23 in 24. Pri obeh vrstah homogenizatov (pripravljenih v PBS ali 10% saharozi) viabilnost vseh MO že po 2 tednih vidno pada.

Še zmeraj je najboljša stopnja preživetja pri MKB, vendar se v primerjavi s prejšnjima dvema temperaturama vidno zniža (vrednost pada na 10^4 CFU/cm2 v PBS in saharozi).

Viabilnost pri homogenizatu v 10% saharozi veliko bolj niha (visok dvig pri 49. dnevu), kar je verjetno posledica eksperimentalne napake. Viabilnost je bila bolj konstantna v raztopini PBS.

Tudi število kvasovk se pri hranjenju na 37 °C občutno zniža (10^4 CFU/cm2). Podobno kot pri MKB je viabilnost bolj konstantna v PBS in bolj niha v 10% saharozi.

Viabilnost OKB v suspenziji v PBS znatno pada že po enem tednu, po 4 tednih pa jih ne zasledimo več. V suspenziji z 10% saharozo je njihova viabilnost občutno boljša, saj jih ob koncu poskusa še vedno zaznamo (10^4 CFU/cm2).
Slika 23: Viabilnost MO v odvisnosti od časa v homogenizatu kefirja v PBS na 37 °C

Slika 24: Viabilnost MO v odvisnosti od časa v homogenizatu kefirja v 10% saharozi na 37 °C
Viabilnost MKB in kvasovk v liofiliziranih vzorcih hranjenih na 37 °C se ne razlikuje bistveno od viabilnosti v homogenizatih. V PBS in 10% saharozi je stopnja preživetja obeh skupin podobna (ob koncu poskusa jih je 10^4 CFU/cm2) ter skozi čas dokaj konstantna (sliki 25 in 26).

Pri OKB ugotovimo, da se viabilnost liofiliziranih vzorcev ne razlikuje veliko od tiste pri sobni temperaturi, saj se vrednosti gibljejo okoli 10^4 CFU/cm2, po 4 oz. 7 tednih pa jih ne zasledimo več.

Slika 25: Viabilnost MO v odvisnosti od časa v liofilizatu homogenizata kefirja v PBS na 37 °C

Slika 26: Viabilnost MO v odvisnosti od časa v liofilizatu homogenizata kefirja v 10% saharozi na 37 °C
4.2.4 Rezultati liofilizacije

Liofilizacija je proces odstranjevanja vode (sušenje), ki se uporablja za dolgotrajnejše shranjevanje bakterijskih pripravkov. Preverjali smo kolikšen delež mase zrn predstavlja voda, ki se z liofilizacijo dejansko odstrani, tako da smo stehtali maso kefirnih zrn pred liofilizacijo in po njej. Rezultate smo predstavili v preglednici V.

Preglednica V: Delež vode v celokupni masi zrn, ki se odstrani z liofilizacijo

<table>
<thead>
<tr>
<th>Masa kefirnih zrn pred liofilizacijo (g)</th>
<th>Masa kefirnih zrn po liofilizaciji (g)</th>
<th>Delež vode v celokupni masi zrn (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>500</td>
<td>62</td>
<td>87,6</td>
</tr>
<tr>
<td>510</td>
<td>60</td>
<td>88,2</td>
</tr>
<tr>
<td>513</td>
<td>61</td>
<td>88,1</td>
</tr>
<tr>
<td>514</td>
<td>61</td>
<td>88,1</td>
</tr>
<tr>
<td>511</td>
<td>60</td>
<td>88,3</td>
</tr>
</tbody>
</table>

Stehtali smo 5 paralek, liofilizirali in ugotovili, da voda predstavlja 88 % celotnega deleža mase zrn. Kar pomeni, da je preostala celokupna masa kefirnih zrn (masa kefirnih zrn s preostankom vode) po liofilizaciji približno 12%. Da bi odstranili še preostalo vodo, bi morali sušiti v sušilniku do konstantne mase.

4.2.5 pH vrednosti vzorcev ob zaključku glavnega poskusa

Meritev pH vrednosti kultur smo izvedli pri zadnjem nacepljanju glavnega poskusa. Na podlagi diagrama ugotovimo (*slika 27*), da najvišje pH vrednosti izmerimo pri 37 °C tako pri homogenizatu, kakor tudi liofilizatu. Na vrednost pH vplivajo raztopine, v katerih smo suspendirali naše vzorce; pri vseh temperaturah so vrednosti v 10% saharozi nižje kakor v PBS. pH vrednosti so pri homogenizatu v PBS nekoliko višje kakor pri liofilizatu v isti raztopini, v 10% saharozi pa je ravno obratno. Iz diagrama je razvidno, da nobeden od vzorcev ne presega pH 7, vrednosti pa niso nižje od pH 3.
4.2.6 Izgled kolonij po inkubaciji

Kolonije MKB smo najlažje prešteli, saj so bile po inkubaciji na ploščah izrazito opazne. Kolonije so mlečno bele barve, okrogle do ovalne oblike, neenakomernih velikosti in s hrapavo površino. Razlike v izgledu kolonij se pojavljajo med vzorci, shranjenimi na različnih temperaturah, vpliv pa ima tudi to, če smo vzorec prej liofilizirali ali ne.

Kolonije so opazne in močno bele barve pri 4 °C in na sobni temperaturi, pri vzorcih hranjenih na 37 °C pa po inkubaciji zrastejo kolonije, ki so bolj blede barve in manj opazne (slika 28). Podobno je tudi pri liofilizatih, saj so kolonije bolj prozorne kakor pri homogenizatih, hkrati pa so po velikosti bolj enakomerne in z gladko površino. Med homogenizati v PBS ali v 10% saharozi ne zasledimo bistvene razlike.
Kolonije kvasovke se po izgledu ne razlikujejo bistveno med različnimi pogoji (slika 29). Prav tako kot kolonije MKB so močno opazne, izredno bele barve, nekoliko bolj okrogle, bolj enakomerne velikosti in z bolj gladko površino. Pri liofiliziranih vzorcih kolonije niso tako prozorne kakor pri MKB, ampak jih zlahka opazimo, enako kot pri neliofiliziranih vzorcih.

Od vseh MO so bile najmanj opazne in najtežje števne OKB. Kolonije so bile na začetku poskusa močne bele barve in enakomerne, tekom shranjevanja pa so bile kolonije blede, manjše in manj opazne (slika 30). Predvsem kolonije iz vzorcev, ki so bili liofilizirani, so bile proti koncu poskusa že praktično neopazne. Kolonije OKB na ploščah prepoznamo po prozornem siju ali kolobarju okoli kolonij (kar se na sliki sicer ne vidi), zaradi dodanega 96% etanola v gojišču. Kolonije je težje fotografirati, ker plošče niso prosojne zaradi dodanega CaCO₃.
Slika 29: Izgled kolonij kvasovk po 72 urni inkubaciji na 30 °C. Vzorec je bil hranjen na 4 °C.

Slika 30: Izgled kolonij OKB po 72 urni inkubaciji na 30 °C. Vzorec je bil hranjen na 4 °C.
4.3 REZULTATI VGRADNJE HOMOGENIZATA KEFIRJA V ALOE VERA GELU

Eden od možnih načinov uporabe probiotikov je vaginalna aplikacija z namenom zdravljenja bakterijske disbioze. Zato je bil naš cilj v tretjem delu eksperimentalnega dela priprava poltrdne FO z vgraditvijo homogenizata kefirja v PBS v aloe vera 100% gel ter ponovno preverjanje viabilnost MO v odvisnosti od časa in temperature skladiščenja. Poleg tega smo zopet preverjali viabilnost tudi homogenizatu kefirja v PBS, kot kontrolni vzorec pa nam je služil aloe vera gel z dodanim PBS.

4.3.1 Viabilnost mikroorganizmov v suspenziji kefirja

Tako kot pri preliminarinem in glavnem poskusu je viabilnost MKB v obdobju 14 dni ostala nespremenjena pri vseh treh temperaturah (10^7 CFU/cm²). Tudi izgled kolonij je bil enak kakor pri prejšnjih poskusih (močno bele in neenakomernih velikosti). Kvasovke so se obnašale podobno – pri 4 °C in na sobni tempertauri je bila viabilnost enaka in konstantna (10^7 CFU/cm²), pri 37 °C pa je rahlo padla po 7 dneh (10^6 CFU/cm²). Presenetila nas je stopnja preživetja OKB, saj se je pri vseh treh pogojih po 7 dneh njihova viabilnost izboljša iz 10^4 na 10^6 CFU/cm² in ostala taka tudi po 14 dneh, z izjemo 37 °C, kjer smo opazili rahel padec (slike 31–33). Začetna nizka viabilnost je lahko posledica eksperimentalne napake.

Slika 31: Viabilnost MO v odvisnosti od časa v homogenizatu kefirja v PBS na 4 °C
4.3.2 Viabilnost mikroorganizmov v aloe vera gelu

Po vgraditvi homogenizata v aloe vera gel opazimo močen padec viabilnosti vseh MO. Ob vključitvi v gel zasledimo samo MKB, katerih vrednost je 10^5 CFU/cm2, po enem tednu skladiščenja na treh različnih temperaturah pa ne opazimo nobenih MO več.
Po 14 dneh se v vzorcih shranjenih na 4 °C zopet pojavijo MKB v nizkem številu (103 CFU/cm2), pojavijo pa se tudi v nizkem številu kvasovke (103 CFU/cm2), pri vzorcih na sobni temperaturi (slike 34–36). Kolonije, ki so zraste, so v primerjavi s tistimi iz prejšnjih poskusov zelo slabo vidne, rahlo bele z gladko površino in opazno manjše. Kot kontrolni vzorec smo uporabili suspenzijo aloe vera gela in PBS, kjer po cepitvi ni zrastlo nič. Zaradi nizke viabilnosti smo s poskusom zaključili.

Slika 34: Viabilnost MO vgrajenih v aloe vera gel skladiščen na 4 °C v odvisnosti od časa

Slika 35: Viabilnost MO vgrajenih v aloe vera gel skladiščen na sobni temperaturi v odvisnosti od časa
4.3.3 pH vrednosti vzorcev

V spodnjem stolpičnem diagramu (slika 37) smo prikazali rezultate meritev pH vrednosti treh vzorcev (homogenizat kefirja v PBS, gel s homogenizatom kefirja v PBS ter gel suspendiran s PBS). Ugotovimo, da je pH homogenizata kefirja rahlo kisel (5,5) ob dodatku aloe vera gela in fosfatnega pufra pa se pH nekoliko poviša (6,5), saj je pH PBS enak 7,4.

Slika 36: Viabilnost MO vgrajenih v aloe vera gel skladiščen na 37°C v odvisnosti od časa

Slika 37: pH vrednosti po vgradnji homogenizata v aloe vera gel
5. RAZPRAVA

5.1 SESTAVA MIKROBIOTE KEFIRNIH ZRN, REDČENJE IN NAČIN HOMOGENIZACIJE

V preliminarnem poskusu potrdimo eno od naših primarnih hipotez, in sicer, da mikrobioto kefirnih zrn sestavlja pesra združba treh skupin MO – MKB, kvasovke in OKB. Med njimi pričakovano prevladujejo MKB ne glede na to, pri kateri temperaturi shranjujemo vzorce, ter ali so ti liofilizirani ali neliofilizirani. Lahko rečemo, da so začetne vrednosti viabilnosti MKB primerljive z vrednostmi, ki so jih pridobili raziskovalci pred nami (10^7 CFU/g do 10^9 CFU/g) (27), (28). Tudi vrednosti kvasovk (10^6 CFU/g) in OKB (10^5 CFU/g) so primerljive z že ugotovljenimi rezultati.

Pri redčenju opazimo, da je pri redčitvi 10^{-6} vidna tu in tam še kakšna kolonija, medtem ko pri redčitvah 10^{-7} in 10^{-8} tako v preliminarnem, kakor v glavnem pokusu ne opazimo nobene izrasle kolonije več. Pri suspendiranju uporabljamo raztopino PBS (fosfatni pufer; pH=7,4), ki v gojišču uravnava pH vrednost, saj MO med rastjo v gojiščih sproščajo organske kisline, ki znižujejo pH, kar inhibira njihovo rast. Uporabljamo tudi raztopino 10% sharoze, ki deluje kot lioprotektant.

Preliminarni poskus smo izvedli tudi z namenom potrditve ustreznosti metode homogenizacije. Ugotovili smo, da je najbolj optimalni način homogenizacije šestkratno homogeniziranje s homogenizatorjem GentleMACSTM Dissociator (Miltenyi Biotec, Bergisch Gladbach, Nemčija) po programu RNA_01.01 tako pri MKB, kakor tudi pri kvasovkah v aerobnem okolju. Kvasovke, ki so aerobni MO, rastejo v prisotnosti O$_2$, zato smo tu tudi pričakovali najvišjo viabilnost. Presenetile so nas anaerobne MKB, pri katerih smo pričakovali najboljšo viabilnost v anaerobnem okolju, a je bila ta nekoliko višje v aerobnem. Pri OKB je bila viabilnost boljša, kadar smo vzorec homogenizirali le dvakrat, zato sklepamo, da večkratno homogeniziranje poškoduje bakterijske celice in tako povzroča slabšo viabilnost. Tudi OKB so tako kot kvasovke aerobne, zato bolje uspevajo v prisotnosti O$_2$. Z izjemo OKB smo potrdili, da je 3. način homogenizacije (šestkratno homogeniziranje s programom RNA_01.01) najbolj optimalen, zato smo ga uporabljali skozi celotno eksperimentalno delo.
5.2 TEMPERATURA KOT STRESNI DEJAVNIK
Kot smo že omenili, na viabilnost MO v kefirnih zrnih vpliva veliko stresnih faktorjev, eden izmed glavnih pa je temperatura, pri kateri shranjujemo zrna. Podobno, kakor je ugotovila Vardjan s sodelavci (28), ugotavljamo tudi mi, na podlagi rezultatov preliminarnega in glavnega poskusa, da se z višanjem temperature znižuje viabilnost vseh treh skupin MO.

Najbolj stabilno viabilnost izkazujejo MKB shranjene na 4 °C. Viabilnost ostaja nespremenjena skozi obdobje 2 mesecev, saj je njihova vrednost od začetka do konca 10^7 log CFU/cm2 (v PBS in 10% saharozi). Rezultati so v skladu s pričakovanji, saj so MO pri nižjih temperaturah metabolno manj aktivni (mirujejo), porabljajo manj energije in zato lahko preživijo dalj časa. To je standarden način dolgotrajne shranjevanja, ki se uporablja tako pri prehranskih dodatkih kot pri prehranskih izdelkih. Pri 37 °C pa so, ravno nasprotno, MO metabolno zelo aktivni, zaloge energije porabljajo hitreje in zato tudi prej odmrejo. Ponekod lahko opazimo nekoliko izboljšano viabilnost pri 10% saharozi, ki je lipoprotektant. Hkrati pa lahko za določene MO (kvasovke) predstavlja vir energije, kar lahko povzroči sekundarno namnožitev MO, ki je bolj izrazita pri višjih temperaturi (30). To bi lahko bil vzrok za nihanja v viabilnosti, kot ga opazimo v suspenziji z 10% saharozi po 7 tednih na 37 °C. Pri sobni temperaturi je viabilnost MKB v homogenizatu PBS primerljiva z viabilnostjo pri 4 °C, medtem ko v homogenizatu z 10% saharozo pade iz 10^7 na 10^5 CFU/cm2. Morebiten vzrok za to je močno znižanje pH-ja kot posledica razgradnje saharoze, ki zavre rast nekaterih MO.

Pri 4 °C viabilnost kvasovk, enako kot viabilnost MKB, ostaja nespremenjena (10^7 CFU/cm2) in brez večjih nihanj. To potrjuje dejstvo, da so MKB in kvasovke v simbiotičnem razmerju, saj kvasovke spodbujajo in izboljšajo preživetje MKB. Kvasovkam za rast in razvoj visoke temperature (nad 30 °C) ne odgovarjajo, zato je po pričkovanjih pri 37 °C viabilnost najslabša in najmanj konstantna.

OKB, ki jih je v mikrobioti kefirnih zrn najmanj, so tudi najmanj stabilne. Tudi njim visoka temperatura najmanj godi, saj jih pri 37 °C v homogenizatu kefirja v PBS po 4 tednih ne zasledimo več. Opazimo pa večjo stopnjo preživetja (10^4 CFU/cm2) pri vzorcih v 10% saharozi, kar nakazuje, da OKB izkoriščajo saharozo (vrhovi v grafih) kot vir energije. Ugotovili smo, da imajo OKB najbolj konstantno viabilnost v homogenizatu v 10% saharozi, skladiščenem na 4 °C.
Kot smo že omenili, so na grafu s črno barvo označene tiste kolonije, ki niso bile števne, to so predvsem OKB. V dveh zaporednih redčitvah so se pojavile najprej konfluentne kolonije pri prvi redčitvi in popolna odsotnost kolonij pri naslednji redčitvi. Tu smo lahko število določili le okvirno, in sicer smo predpostavili prisotnost ene kolonije pri koфluentni redčitvi.

5.3 VPLIV LIOFILIZACIJE NA VIABILNOST

Liofilizacija je postopek odstranjevanja vode z zamrzovanjem. Vendar je voda nujno potrebna za rast MO, deluje kot topilo in ščiti pred temperaturnimi spremembami. Odvzemanje vode zato zmanjša viabilnost (23), kar smo potrdili tudi v okviru eksperimentalnega dela.

Še preden smo se lotili analize viabilnosti liofiliziranih vzorcev, smo se želeli prepričati, ali je uporabljjen postopek liofilizacije ustrez. Stehtali smo 5 naključnih vzorcev (sveža, nehomogenizirana kefirna zrna) pred in po liofilizaciji. Ugotovili smo, da se masa vode v celokupni masi zrn, ki se odstrani z liofilizacijo zmanjša za 88,1 %, kar je primerljivo z dejstvom iz literature (49). Tako smo potrdili ustreznost postopka liofilizacije.

Tako kot pri homogenizatih v suspenziji, ostajajo tudi pri liofilizatih homogenizatov najbolj viabilne MKB. Temperatura shranjevanja je imela tekom shranjevanja manjši vpliv na liofilizirane vzorce kakor na homogenizate. Tako pri MKB kot kvasovkah je bila na splošno stopnja preživetja pri liofilizatih sicer manjša kakor pri homogenizatih, vendar tekom shranjevanja pri vseh treh skladiščnih temperaturah ne prihaja do večjih nihanj v viabilnosti kakor pri homogenizatih. Presenetili so nas rezultati pri vzorcih z 10% saharozo, kjer smo pričakovali izboljšano viabilnost zaradi lioprotektivnega delovanja, vendar je ta slabša od vzorcev v PBS. Domnevamo, da je na zmanjšanje viabilnosti vplivalo zmanjšanje pH kot posledica metabolizma saharoze. Manjše viabilnost pri liofilizaciji homogenizata v 10% saharozl smo opazili tudi pri kvasovkah. OKB najslabše prenesejo liofilizacijo, saj jih pri liofilizatih na sobni temperaturi in na 37 °C po 4 oz. 7 tednih ne zasledimo več.

Stopnja preživetja po liofilizaciji je sicer visoka, med 70–85 %, kar je zadovoljivo. Viabilnost MO je odvisna od toplotne in osmotske odpornosti, saj MO pri liofilizaciji doživijo neke vrste osmotski stres. Zato dodajamo vzorcem za izboljšanje viabilnost med
liofilizacijo (izboljšanje je lahko tudi do 100-krat) lioprotektante (saharoza, trehaloza), sušila ali antioksidante (1). V našem primeru 10% saharoza pri liofilizaciji ni izboljšala viabilnosti, kar je mogoče posledica razgradnje in padca pH. Namesto saharoze bi lahko uporabili trehalozo, katere struktura je prikazana na sliki 38. Trehaloza je nereducirajoči disaharid, ki ima visoko zmogljivost zadrževanja vode. Tvori gelsko fazo, ki preprečuje poškodbe celičnih organelov in tako izboljša stopnjo preživetja, hkrati pa je tudi antioksidant, kar predstavlja še dodatno prednost (54).

![Trehaloza](image)

Slika 38: Trehaloza (55)

5.4 VPLIV ALOE VERA GELA NA VIABILNOST MIKROORGANIZMOV

Aloe vera gel ne draži vaginalne sluznice, pomaga pri preprečevanju ali zdravljenju glivičnega vaginitisa, hkrati pa služi kot vir prehrane oz prebiotik za MKB (40), (41). Zato je bil naš namen vgraditi homogenizat kefirja v aloe vera 100% gel, s ciljem razvoja poltrdne FO za vaginalno uporabo pri zdravljenju bakterijske disbioze. Do sedaj podobna uporaba še ni bila opisana. V ta namen smo pripravili svež homogenizat kefirja, ki je izkazoval podobno vsebnost MO, kot smo jo določili predhodno v preliminarnem in glavnem poskusu, zato smo se odločili za vgradnjo v aloe vera gel.
Po dvotedenskem spremljanju viabilnosti MO v gelu smo ugotovili, da stopnja preživetja vseh skupin MO močno upade. Po 2 tednih preživijo MKB skladiščene na 4 °C (končna vrednost 10^3 CFU/cm2) ter kvasovke, ki se pojavijo šele po 1 tednu pri sobni temperaturi in pri 4 °C (10^3 CFU/cm2). OKB nismo detektirali pri nobeni temperaturi. Ker so zrna izakozavala visoko stopnjo preživetja pred samo vgraditvijo v gel, sklepamo, da gel, ki smo ga uporabili in je bil označen kot 100% aloe vera gel, ni primeren za vgraditev MO, saj vsebuje konzervansa diazolidinil urea in DMDM hidantoin (sliki struktur 39 in 40). Konzervansi so snovi, ki jih dodajamo živilom ali drugim izdelkom za podaljšanje obstojnosti oz. roka uporabnosti, saj njihova prisotnost zavira razvoj obstoječih MO. Oba prisotna konzervansa, ki sta derivata imidazola, delujeta protimikrobno, kar pomeni, da zavirata rast MO v homogenizatu kefirja in s tem seveda zmanjšata stopnjo preživetja. Da MO popolnoma ne uničita, kaže porast števila kvasovk po 2 tednih skladiščenja (v primerjavi z enim tednom). Ena od možnih rešitev pri nadaljnem delu bi bila uporaba nekonzerviranega aloe vera gela. Druga rešitev pa, da bi namesto poltrdne FO izdelali vaginalne kapsule iz liofiliziranih kefinih zrn in liofiliziranega aloe vera gela, saj izkazujejo večjo stabilnost skozi daljši čas ter so bolj priročne za rokovanje in transport. Naš pomislek za nadaljnje delo pa je tudi sprememba metode za spremljanje viabilnosti – lahko bi uporabili fluorescenčne tehnike, ki temeljijo na fluorokromih, ki omogočajo razlikovanje med nepoškodovanimi in odmrlimi celicami.

Slika 39: Diazolidinil urea (56)
Slika 40: DMDM hidantoin (57)
5.5 PH VREDNOSTI

Ugotovimo, da nobeden od vzorecev, ki smo mu merili pH vrednost, ni bazičen oz. ne presega vrednosti 7. Najvišji pH homogenizata v PBS izmerimo pri 37 °C (pH=7).

Vse vrednosti, izmerjene v raztopini 10% saharozi, so manjše, kakor pa tiste, merjene v PBS, saj je 10% saharozo raztopljena v DH₂O, ki ima pH 5,5, PBS pa 7,4. Ravno zaradi tega prihaja tudi do razlik med homogenizatom in liofilizatom v PBS ter homogenizatom in liofilizatom v 10% saharozi – liofilizat v PBS pred nacepljanjem resuspendiramo z dH₂O, ki je kisel in zato se njegova vrednost v primerjavi s homogenizatom zmanjša; pri vzorcih s saharozo pa je ravno obratno; liofilizatu se pH po resuspendiranju zviša.

Našemu poltrdnemu izdelku (homogenizat kefirja s PBS in aloe vera gelom) izmerimo pH vrednost, ki znaša 6,5. Mešanica je zaradi prisotnosti MKB rahlo kisla, kar pa je ena od glavnih zahtev izdelkov za vaginalno uporabo. Izdelki morajo imeti pH vrednost pod 7, ker ima namreč sama vaginalna služnica kisel pH in bi z alkalnimi izdelki povzročili porušenje ravnovesja in možnost nastanka vaginalnih obolenj.
6. SKLEP

V sklopu magistrske naloge, kjer smo proučevali vpliv skladiščnih pogojev na viabilnost različnih skupin MO v homogenizatu kefirja, smo ugotovili sledeče:

→ Mikrobioto kefirnih zrn mlekarne Krepko sestavlja pестра združba MKB, kvasovk in OKB, med katerimi prevladujejo MKB, pri vseh skladiščnih pogojih.

→ Viabilnost se spreminja v odvisnosti od časa in v odvisnosti od skladiščnih pogojev – izkaže se, da je viabilnost najboljša, če homogenizate pripravimo v PBS in jih hranimo pri 4 °C, najslabša pa pri 37 °C. Pri OKB je stopnja preživetja nekoliko boljša, kadar homogenizate pripravimo v 10% saharozi. Vsebnost MKB je bila 10^7 CFU/cm2 skozi celoten čas testiranja tako na 4 °C, kakor tudi pri sobni temperaturi, kar zadošča kriteriju viabilnosti za probiotike.

→ Po liofilizaciji se masa zrn zmanjša za kar 88 %. Pri tem se znatno zmanjša stopnja preživetja MO (iz 10^7 na 10^4 CFU/cm2). Dodatek 10% saharoze, ki je lioprotektant, viabilnosti ne izboljša.

→ Po vgradnji homogenizata kefirja v aloe vera 100% gel viabilnost MKB in kvasovk močno pade (10^3 CFU/cm2), OKB pa sploh ne preživijo pri nobeni temperaturi skladiščenja, kar je posledica dodanih konzervansov.
7. LITERATURA

42. Hamman JH: Composition and applications of Aloe vera leaf gel. Molecules 2008; 13 (8): 1599–616.

